Muse manual

an authoring and publishing environment
for GNU Emacs and XEmacs

This manual is for Emacs Muse version 3.12.
Copyright (©) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License” in this manual.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

This document is part of a collection distributed under the GNU Free Docu-
mentation License. If you want to distribute this document separately from the
collection, you can do so by adding a copy of the license to the document, as
described in section 6 of the license.

All Emacs Lisp code contained in this document may be used, distributed, and
modified without restriction.

Table of Contents

1 About the documentation...................... 1
2 Whatis Muse?.............. ... 2
3 How to Get Muse Releases and Development
Changes............... i 3
3.1 Released versions of Musel 3
3.2 Latest unreleased development changes......................... 3
4 Compiling and Installing Muse................ 6
5 Getting Started.................... 7
5.1 How to Load MUSe 7
5.2 How to Edit Filesin Muse........... ..o, 7
5.3 Publishing a Single File or Project................. 8
5.4 Using a Different File Extension................ 8
6 Creating and Managing Muse Projects....... 9
6.1 A Single-Project Example............. . i 9
6.2 A Multiple-Project Example............., 9
6.3 Publishing Subdirectories in Projects.............. 10
6.4 Listing of Available Options for Projects 10
7 Keys Used in Muse Mode 13
8 Rules for Using Markup 15
8.1 Paragraphs: centering and quoting 15
8.2 Levels of headings......... .o 15
8.3 Directives at the beginning of a document 16
8.4 Bold, italicized, and underlined text........................... 16
8.5 Making notes to be shown at theend.......................... 17
8.6 Indicating poetic stanzas.............. 17
8.7 Listsof items ... 17
8.8 Generation of data tables il 18
8.9 Hyperlinks and email addresses with descriptions.............. 19
8.10 Bare URLs, WikiNames, and InterWiki links................. 19
8.11 Publishing and displaying images............. ..., 20
8.12 Inserting a horizontal line or anchor.......................... 21
8.13 Evaluating Emacs Lisp code in documents for extensibility.... 21
8.14 Support for citing other resourceso.... 22
8.15 Lines to omit from published output 23

8.16 Tags that Muse recognizes ...t 23

9 Publishing Various Types of Documents 27

9.1 Integrating Muse and pyblosxom.cgi........................... 27
9.1.1 Other tools needed for the Blosxom style 27
9.1.2 Format of a Blosxom entry and automation............... 28
9.1.3 Blosxom styles and options provided...................... 28

9.2 Publishing entries into a compilation 29

9.3 Publishing ConTeXt documents, 30

9.4 Publishing in DocBook XML form....................., 33

9.5 Publishing in HTML or XHTML form......................... 33

9.6 Integrating with ikiwiki......... ... o 35

9.7 Keeping a journal or blog i 36

9.8 Publishing LaTeX documents, 40

9.9 Publish a poem to LaTeX or PDF........ 43

9.10 Publish entries to Texinfo format or PDF 44

9.11 Publish entries to XML ... 45

10 Making your own publishing styles......... 47

10.1 Specifying functions to mark up text 47

10.2 Markup rules for publishing.......... oL 47

10.3 Strings specific to a publishing style.......................... 49

10.4 Tag specifications for special markup......................... 54

10.5 Parameters used for defining styles............, 54

10.6 Deriving a new style from an existing one 55

11 Miscellaneous add-ons, like a minor mode

A
12 Getting Help and Reporting Bugs.......... 59
13 History of This Document................... 61
14 Contributors to This Documentation....... 62

.. 63

ii

Chapter 1: About the documentation 1

1 About the documentation

This document describes Muse, which was written by John Wiegley and is now maintained
by Michael Olson. Several versions of this manual are available on-line.

e PDF: http://mwolson.org/static/doc/muse.pdf
e HTML (single file): http://mwolson.org/static/doc/muse.html
e HTML (multiple files): http://mwolson.org/static/doc/muse/

Chapter 2: What is Muse? 2

2 What is Muse?

Emacs Muse (also known as “Muse” or “Emacs-Muse”) is an authoring and publishing
environment for Emacs. It simplifies the process of writing documents and publishing them
to various output formats.

Muse consists of two main parts: an enhanced text-mode for authoring documents and
navigating within Muse projects, and a set of publishing styles for generating different kinds
of output.

What makes Muse distinct from other text-publishing systems is a modular environment,
with a rather simple core, in which "styles" are derived from to create new styles. Much of
Muse’s overall functionality is optional. For example, you can use the publisher without the
major-mode, or the mode without doing any publishing; or if you don’t load the Texinfo or
LaTeX modules, those styles won’t be available.

The Muse codebase is a departure from emacs-wiki.el version 2.44. The code has been
restructured and rewritten, especially its publishing functions. The focus in this revision is
on the authoring and publishing aspects, and the "wikiness" has been removed as a default
behavior (available in the optional ‘muse-wiki’ module). CamelCase words are no longer
special by default.

One of the principal aims in the development of Muse is to make it very easy to produce
good-looking, standards-compliant documents.

Chapter 3: How to Get Muse Releases and Development Changes 3

3 How to Get Muse Releases and Development
Changes

3.1 Released versions of Muse

Choose to install a release if you want to minimize risk.

Errors are corrected in development first. User-visible changes will be announced on
the muse-el-discuss@gna.org mailing list. See Chapter 12 [Getting Help and Reporting
Bugs|, page 59.

Debian users can get Muse via apt-get. The ‘muse-el’ package is available both at
Michael Olson’s APT repository and the official Debian repository. To make use of the
former, add the following line to your ‘/etc/apt/sources.list’ file and run apt-get
install muse.

deb http://mwolson.org/debian/ ./

Ubuntu users can also get Muse via apt-get. The ‘muse-el’ package is available both
at Michael Olson’s APT repository and the official Ubuntu repository. To make use of
the former, add the following line to your ‘/etc/apt/sources.list’ file and run apt-get
install muse.

deb http://mwolson.org/ubuntu/ ./

The reason for making separate Debian and Ubuntu packages is that this manual is under
the GFDL, and Debian will not allow it to be distributed in its main repository. Ubuntu,
on the other hand, permits this manual to be included with the ‘muse-el’ package.

Alternatively, you can download the latest release from http://download.gna.org/muse-el/|]

3.2 Latest unreleased development changes
Choose the development version if you want to live on the bleeding edge of Muse develop-
ment or try out new features before release.

The git version control system allows you to keep up-to-date with the latest changes to
the development version of Muse. It also allows you to contribute changes (via commits,
if you are have developer access to the repository, or via patches, otherwise). If you would
like to contribute to Muse development, it is highly recommended that you use git.

If you are new to git, you might find this tutorial helpful: http://www.kernel.org/pub/software/scm/git

Downloading the Muse module with git and staying up-to-date involves the following
steps.

1. Install git.
e Debian and Ubuntu: apt-get install git-core.
e Windows: http://git.or.cz/gitwiki/WindowsInstall.

e Other operating systems: download, compile, and install the source from
http://www.kernel.org/pub/software/scm/git/, or find a git package for
your operating system.

2. Download the Muse development branch.

If you have developer access to Muse, do:

mailto:muse-el-discuss@gna.org
http://download.gna.org/muse-el/
http://www.kernel.org/pub/software/scm/git/docs/tutorial.html
http://git.or.cz/gitwiki/WindowsInstall
http://www.kernel.org/pub/software/scm/git/

Chapter 3: How to Get Muse Releases and Development Changes 4

git clone ssh://repo.or.cz/srv/git/muse-el.git muse
otherwise, do:
git clone git://repo.or.cz/muse-el.git muse

If you are behind a restrictive firewall, and do not have developer access, then do the
following instead:

git clone http://repo.or.cz/r/muse-el.git muse

3. List upstream changes that are missing from your local copy. Do this whenever you
want to see whether new changes have been committed to Muse. If you wish, you may
skip this step and proceed directly to the “update” step.

Change to the source directory you are interested in.
cd muse

Fetch new changes from the repository, but don’t apply them yet
git fetch origin

Display log messages for the new changes
git log HEAD..origin

“origin” is git’s name for the location where you originally got Muse from. You can
change this location at any time by editing the ‘.git/config’ file in the directory
where the Muse source was placed.

4. Update to the latest version by pulling in any missing changes.
cd muse
git pull origin
git will show how many files changed, and will provide a visual display for how many
lines were changed in each file.
There are other ways to interact with the Muse repository.
e Browse git repo: http://repo.or.cz/w/muse-el.git
e Latest development snapshot: http://mwolson.org/static/dist/muse-latest.tar.gz}

e Latest development snapshot (zip file): http://mwolson.org/static/dist/muse-latest.zip]]

The latest development snapshot can lag behind the git repo by as much as 20 minutes,
but never more than that.

Becoming a Muse developer

If you want commit access to the shared Muse repository, then register an account at
http://repo.or.cz (be sure to add an SSH key), and contact the current maintainer at
mwolson@gnu.org. It would be best to send some patches to the muse-el-discuss@gna.org
mailing list first, so that he knows that you know what you are doing. See Chapter 12
[Getting Help and Reporting Bugs|, page 59, for instructions on subscribing to the mailing
list.

You must also be willing to sign a copyright assignment for your changes to Muse, since
Muse is a GNU project. The current maintainer will assist you in this process if you contact
him.

http://repo.or.cz/w/muse-el.git
http://mwolson.org/static/dist/muse-latest.tar.gz
http://mwolson.org/static/dist/muse-latest.zip
http://repo.or.cz
mailto:mwolson@gnu.org
mailto:muse-el-discuss@gna.org

Chapter 3: How to Get Muse Releases and Development Changes 5

For information on committing changes to Muse and performing development, please
consult http://emacswiki.org/cgi-bin/wiki/MuseDevelopment.

http://emacswiki.org/cgi-bin/wiki/MuseDevelopment

Chapter 4: Compiling and Installing Muse 6

4 Compiling and Installing Muse

Muse may be compiled and installed on your machine.

Compilation

This is an optional step, since Emacs Lisp source code does not necessarily have to be
byte-compiled. Byte-compilation may yield a very slight speed increase.

A working copy of Emacs or XEmacs is needed in order to compile Emacs Muse. By
default, the program that is installed with the name emacs will be used.

If you want to use the xemacs binary to perform the compilation, you must copy
‘Makefile.defs.default’ to ‘Makefile.defs’ in the top-level directory, and then edit
‘Makefile.defs’ as follows. You can put either a full path to an Emacs or XEmacs binary
or just the command name, as long as it is in the PATH.

EMACS = xemacs

SITEFLAG -no-site-file

Edit the section as necessary

install_info = install-info --section "XEmacs 21.4" $(1).info \
$ (INFODIR) /dir ||

Running make in the top-level directory should compile the Muse source files in the
‘lisp’ directory, and generate an autoloads file in ‘lisp/muse-autoloads.el’.

Installation

Muse may be installed into your file hierarchy by doing the following.

Copy ‘Makefile.defs.default’ to ‘Makefile.defs’ in the top-level directory, if you
haven’t done so already. Then edit the ‘Makefile.defs’ file so that ELISPDIR points to
where you want the source and compiled Muse files to be installed and INFODIR indicates
where to put the Muse manual. You may use a combination of DESTDIR and PREFIX to
further determine where the installed files should be placed. As mentioned earlier, you will
want to edit EMACS and SITEFLAG as shown in the Compilation section if you are using
XEmacs.

If you are installing Muse on a Debian or Ubuntu system, you might want to change the
value of INSTALLINFO as specified in ‘Makefile.defs’.

If you wish to install Muse to different locations than the defaults specify, edit
‘Makefile.defs’ accordingly.

Run make as a normal user, if you haven’t done so already.

Run make install as the root user if you have chosen installation locations that require
root, permissions.

ELPA

For those used to installing software packages, there will be a muse package available in the
Emacs Lisp Package Archive (abbreviated “ELPA”) as of the 3.10 release of Muse. This
package will be compiled and installed automatically in a user-specific location. For more
information on ELPA, see http://tromey.com/elpa/.

http://tromey.com/elpa/

Chapter 5: Getting Started 7

5 Getting Started

5.1 How to Load Muse

To use Muse, add the directory containing its files to your load-path variable, in your
‘.emacs’ file. Then, load in the authoring mode, and the styles you wish to publish to. An
example follows.

(add-to-list ’load-path "<path to Muse>")
(require ’muse-mode) ; load authoring mode

(require ’muse-html) ; load publishing styles I use
(require ’muse-latex)

(require ’muse-texinfo)

(require ’muse-docbook)

(require ’muse-project) ; publish files in projects
An easy way of seeing which settings are available and changing settings is to use the
Muse customization interface. To do this, type M-x customize-group muse RET. Each of
the options has its own documentation. Options are grouped logically according to what
effect they have.

5.2 How to Edit Files in Muse

Muse Mode should automatically be activated when you visit a file with a “.muse” extension.
One such file is ‘QuickStart.muse’, which is available in the ‘examples’ directory of the
Muse distribution. You can tell that Muse Mode has been activated by checking for the
text “Muse” in your mode line. If Muse Mode has not been activated, you may activate it
by type M-x muse-mode RET.

You will notice that Muse files are highlighted very simply. Links are colored blue,
headings are large and bold text, and <example> tags are colored in grey.

There are several different ways to edit things like links, which hide the underlying
Muse markup. One way is to toggle font-locking off by hitting C-c C-1, which is also M-x
font-lock-mode, make changes, and then hit C-c C-1 again to toggle font-locking back on.
Another way is just to move into the text and edit it. Markup can also be removed by
normal deletion methods, though some side effects might require a second deletion.

For the particular case of editing links, it is easiest to move to the link and do C-c
C-e, which is also M-x muse-edit-link-at-point. This prompts you for the link and its
description, using the previous contents of the link as initial values. A link to another Muse
file may be created by hitting C-c TAB 1. A link to a URL may be created by hitting C-c
TAB u. Links may be followed by hitting RET on them.

If you want to add a new list item, this may by accomplished by hitting M-RET. This will
put a dash and some spaces on the screen. The dash is the Muse markup that indicates a
list item. It is also possible to created “nested” lists with this command, by adjusting the
number of spaces in front of the dashes. If you have lists with long lines, you can move to
a list item and hit M-q to wrap it onto multiple lines.

Chapter 5: Getting Started 8

5.3 Publishing a Single File or Project

The command M-x muse-project-publish-this-file will publish the current document
to any available publishing style (a publishing style is an output format, like HTML or
Docbook), placing the output in the current directory. If you are in Muse Mode, this
command will be bound to C-c C-t. If the file has been published recently, and its contents
have not changed, running C-c C-t again will not publish the file. To force publishing in
this case, do C-u C-c C-t.

If you have set up projects and are visiting a file that is part of a project, then C-c C-t will
restrict the output formats to those which are used by the project, and will automatically
publish to the output directory defined by the project. If you want to publish to a different
directory or use a different format, then use C-c M-C-t, which is also M-x muse-publish-
this-file.

If the currently opened file is part of a defined project in muse-project-alist, it (and
the rest of the changed files in a project) may be published using C-c C-p.

5.4 Using a Different File Extension

By default, Muse expects all project files to have the file extension ‘.muse’. Files without
this extension will not be associated with Muse mode and will not be considered part of
any project, even if they are within a project directory.

If you don’t want to use ‘.muse’, you can customize the extension by setting the value
of muse-file-extension.

If you don’t want to use any extension at all, and want Muse to autodetect project files
based on their location, then add the following to your Muse settings file.

(setq muse-file-extension nil
muse-mode-auto-p t)

Note that if you chose to have muse-file-extension set to nil, you may have trouble
if your ‘.emacs’ file or other init scripts attempt to visit a Muse file. (A very common
example of this is if you use Planner with Muse and run (plan) from your ‘.emacs’.) If
you wish to visit Muse files from your ‘.emacs’, be sure to also add the following additional
code before any such visits happen:

(add-hook ’find-file-hooks ’muse-mode-maybe)

Chapter 6: Creating and Managing Muse Projects 9

6 Creating and Managing Muse Projects

Often you will want to publish all the files within a directory to a particular set of output
styles automatically. To support, Muse allows for the creation of "projects".

6.1 A Single-Project Example
Here is a sample project, which may be defined in your ‘.emacs’ file.

(setq muse-project-alist
>(("Website" ("7/Pages" :default "index")
(:base "html" :path "“/public_html")
(:base "pdf" :path "~/public_html/pdf"))))

The above defines a project named "website", whose files are located in the directory
‘”/Pages’. The default page to visit is ‘index’. When this project is published, each page
will be output as HI'ML to the directory ‘~/public_html’, and as PDF to the directory
‘“/public_html/pdf’. Within any project page, you may create a link to other pages using
the syntax ‘[[pagename]]’.

If you would like to include only some files from a directory in a Muse project, you may
use a regexp in place of ‘”/Pages’ in the example.

6.2 A Multiple-Project Example

It is possible to specify multiple projects. Here is an example of three projects: a generic
website, a projects area, and a day-planner (the day-planner part requires Planner Mode—
see http://wjsullivan.net/PlannerMode.html to get it).

(setq muse-project-alist
>(("Website" (""/Pages" :default "index")
(:base "html" :path "~/public_html"))
(("Projects" (""/Projects" :default "index")
(:base "xhtml"
:path "~ /public_html/projects"
texclude "/TopSecret")
(:base "pdf"
:path "~/public_html/projects/pdf"
:exclude "/TopSecret")))
("Plans" ("~/Plans"
:default "TaskPool"
:major-mode planner-mode
:visit-link planner-visit-link)
(:base "planner-xhtml"
:path "7/public_html/plans"))))

The ‘:major-mode’ attribute specifies which major to use when visiting files in this
directory.

The ‘:visit-1ink’ attribute specifies the function to call when visiting links.

The ‘:exclude’ attribute has a regexp that matches files to never publish.

http://wjsullivan.net/PlannerMode.html

Chapter 6: Creating and Managing Muse Projects 10

6.3 Publishing Subdirectories in Projects

If you want to publish a directory and all of its subdirectories, Muse provides two con-
venience functions that together generate the proper rules for you. Note that we use the
backtick to begin this muse-project-alist definition, rather than a single quote.

(setq muse-project-alist
‘(("Website" (""/Pages" :default "index")
(:base "html" :path "~/public_html"))
("Blog" (,@(muse-project-alist-dirs "~/Blog")
:default "index")
;; Publish this directory and its subdirectories. Arguments
;; are as follows. The above ‘muse-project-alist-dirs’ part
;; 1s also needed.
HR 1. Source directory
N 2. Output directory
M 3. Publishing style
HH remainder: Other things to put in every generated style
,@(muse-project-alist-styles "~ /Blog"
"~/public_html/blog"
"blosxom"))))

The muse-project-alist-dirs function takes a directory and returns it and all of its
subdirectories in a list.

The muse-project-alist-styles function is explained by the comments above.

The “blosxom” text is the name of another publishing style, much like “html”. See
Section 9.1 [Blosxom], page 27, for further information about it. You can use any publishing
style you like for the third argument to muse-project-alist-styles.

6.4 Listing of Available Options for Projects
This is a listing of all of the various options (or, more accurately: attributes) that may be
specified in muse-project-alist.

Each muse-project-alist entry looks like this:

(PROJECT-NAME (SOURCES)
QUTPUTS)

We refer to these names below.

“Attributes”, which compose SOURCES and OUTPUTS, are a pair of values. The first
value is a keyword, like ‘:default’. The second part is the value associated with that
keyword, such as the text “index”. If you are familiar with Emacs Lisp property lists, the
concept is similar to that, except that in the SOURCES section, single directories can be
interspersed with two-value attributes.

Project Name

This is a string that indicates the name of the project. It is primarily used for publishing
interwiki links with the ‘muse-wiki.el’ module.

Chapter 6: Creating and Managing Muse Projects 11

Sources

This part of a muse-project-alist entry consists of two-value attributes, and also directory
names. If you are publishing a book, the order of directories and attributes is significant.

The minimal content for the sources section is a list of directories.

4

:book-chapter’
Indicates a new chapter of a book. The text of the title of the chapter comes
immediately after this keyword.

‘:book-end’
Indicates the end of a book. Directories listed after this one are ignored when
publishing a book. The value “t” (without quotes) should come immediately
after this keyword.

‘:book-funcall’
A function to call while publishing a book. This is useful for doing something
just after a particular chapter.

:book-part’
Indicates the beginning of a new part of the book. The text of the title should
come immediately after this keyword.

‘:book-style’
Indicate a particular publishing style to use for this part of the book. If this is
specified, it should come just after a ‘:part’ attribute.

‘:default’
The default page to visit when browsing a project. Also, if you are using the
‘muse-wiki.el’ module, publishing a link to just a project’s name will cause it
to link to this default file.

:force-publish’
This specifies a list of pages which should be published every time a project is
published (by using C-c C-p, for example), regardless of whether their contents
have changed. This is useful for updating Index pages, pages that use the
<include> tag, and other pages that have dynamically-generated content.

:major-mode’
This specifies the major mode to use when visiting files in this project. The
default is muse-mode.

:nochapters’
This indicates that while publishing a book, do not automatically create chap-
ters. Values which may follow this are nil (the default, which means that we
automatically create chapters), or non-nil, which means that we manually spec-
ify chapters with the ‘:book-chapter’ attribute,

:publish-project’
Indicates which function we should call when publishing a project.

:set’ This specifies a list of variables and values to set when publishing a project.
The list should be a property list, which is in the form:

Chapter 6: Creating and Managing Muse Projects 12

(VAR1 VALUE1 VAR2 VALUE2 ...)

‘:visit-link’
Specifies the function to call when visiting a link. The default is muse-visit-
link-default. The arguments for that function should be (1) the link and (2)
whether to visit the link in a new window.

Outputs

This part of a muse-project-alist entry is composed of lists of attributes. Each list is called
an “output style”.

The minimal content for an output style is a ‘:base’ attribute and a ‘:path’ attribute.
:base’ Publishing style to use, such as “html”, “docbook”, or “pdf”.

:base-url’
An external URL which can be used to access published files. This is mainly
used by the ‘muse-wiki’ module when publishing links between two separate
projects, if the projects are served on different domains.

It is also used by the ‘muse-journal’ module to create the RSS or RDF output.

:exclude’
Exclude items matching a regexp from being published. The regexp should
usually begin with "/".

:include’
Only include items matching a regexp when publishing. The regexp should
usually begin with "/".

‘:path’ The directory in which to store published files.

:timestamps’
A file containing the timestamps (that is, time of creation) for files in this

project. It might eventually used by the ‘muse-blosxom’ module, but this
option is not currently in use by any Muse code.

Chapter 7: Keys Used in Muse Mode

7 Keys Used in Muse Mode

This is a summary of keystrokes available in every Muse buffer.
C-c C-a (‘muse-index’)

Display an index of all known Muse pages.
C-c C-b (‘muse-find-backlinks’)

Find all pages that link to this page.

C-c C-e (‘muse-edit-link-at-point’)
Edit link at point.

C-c C-f (‘muse-project-find-file’)
Open another Muse page. Prompt for the name.

C-cC-i1, C-c TAB1 (‘muse-insert-relative-link-to-file’)
Insert a link to a file interactively.

C-c C-i t, C-c TAB t (‘muse-insert-tag’)
Insert a tag interactively.

C-c C-i u, C-c TAB u (‘muse-insert-url’)
Insert a URL interactively.

C-c C-1 (‘font-lock-mode”’)
Toggle font lock / highlighting for the current buffer.

C-c C-p (‘muse-project-publish’)
Publish any Muse pages that have changed.

C-c C-s (‘muse-search’)
Find text in all files of the current project.

C-c C-t (‘muse-project-publish-this-file’)

13

Publish the currently-visited file. Prompt for the style if the current file can be

published using more than one style.

C-c C-S-t, or C-c C-M-t (‘muse-publish-this-file’)

Publish the currently-visited file. Prompt for both the style and output direc-

tory.

C-c C-v (‘muse-browse-result’)
Show the published result of this page.
C-c = (‘muse-what-changed’)
Diff this page against the last backup version.

TAB Move to the next Wiki reference.

S-TAB Move to the previous Wiki reference.

M-TAB Complete the name of a page from the current project at point.
M-RET Insert a new list item at point, indenting properly.

Cc—< Decrease the indentation of the list item at point.

Chapter 7: Keys Used in Muse Mode

c—> Increase the indentation of the list item at point.

M-x muse-colors-toggle-inline-images RET
Toggle display of inlined images on/off.

M-x muse-update-values RET

Update various values that are automatically generated.

Call this after changing muse-project-alist.

14

Chapter 8: Rules for Using Markup 15

8 Rules for Using Markup

A Muse document uses special, contextual markup rules to determine how to format the
output result. For example, if a paragraph is indented, Muse assumes it should be quoted.

There are not too many markup rules, and all of them strive to be as simple as possible
so that you can focus on document creation, rather than formatting.

8.1 Paragraphs: centering and quoting

Paragraphs in Muse must be separated by a blank line.

Centered paragraphs and quotations

A line that begins with six or more columns of whitespace (either tabs or spaces) indicates
a centered paragraph. Alternatively, you can use the <center> tag to surround regions that
are to be published as centered paragraphs.

But if a line begins with whitespace, though less than six columns, it indicates a quoted
paragraph. Alternatively, you can use the <quote> tag to surround regions that are to be
published as quoted paragraphs.

Literal paragraphs

The <example> tag is used for examples, where whitespace should be preserved, the text
rendered in monospace, and any characters special to the output style escaped.

There is also the <literal> tag, which causes a marked block to be entirely left alone.
This can be used for inserting a hand-coded HTML blocks into HTML output, for example.

If you want some text to only be inserted when publishing to a particular publishing
style, use the ‘style’ attribute for the <literal> tag. An example follows.
<literal style="latex">
A LaTeX-based style was used in the publishing of this document.
</literal>

This will leave the region alone if the current publishing style is “latex” or based on
“latex”, such as “pdf”, and delete the region otherwise. It is also possible to leave the text
alone only for one particular style, rather than its derivations, by adding exact="t" to the
tag.

Line breaks

If you need a line break, then use the ‘
’ tag. Most of the time this tag is unnecessary,
because Muse will automatically detect paragraphs by means of blank lines. If you want
to preserve newlines in several lines of text, then use verse markup instead (see Section 8.6
[Verse|, page 17).

8.2 Levels of headings

A heading becomes a chapter or section in printed output — depending on the style. To
indicate a heading, start a new paragraph with one or more asterices, followed by a space
and the heading title. Then begin another paragraph to enter the text for that section.

All levels of headings will be published. Most publishing styles only distinguish the
between the first 4 levels, however.

Chapter 8: Rules for Using Markup 16

* First level
** Second level
*** Third level

***xx Fourth level

8.3 Directives at the beginning of a document

Directives are lines beginning with the ‘#’ character that come before any paragraphs or
sections in the document. Directives are of the form “#directive content of directive”.
You can use any combination of uppercase and lowercase letters for directives, even if the
directive is not in the list below.

The muse-publishing-directive function may be used in header and footer text to
access directives. For example, to access the #title directive, use (muse-publishing-
directive "title").

The following is a list of directives that Muse uses.

#author The author of this document.
If this is not specified, Muse will attempt to figure it out from the user-full-
name variable.

#date The date that the document was last modified.
This is used by publishing styles that are able to embed the date information.

#desc A short description of this document.
This is used by the journal publishing style to embed information inside of an
RSS/RDF feed.

#title The title of this document.
If this is not specified, the name of the file is used.

8.4 Bold, italicized, and underlined text

To emphasize text, surround it with certain specially recognized characters.

emphasis

kstrong emphasis
**x*xyery strong emphasis*kx
underlined

=verbatim and monospace=

While editing a Muse document in Muse mode, these forms of emphasis will be high-
lighted in a WYSIWYG manner. Each of these forms may span multiple lines.

Verbatim text will be colored as gray by default. To change this, customize muse-
verbatim-face.

You can also use the <code> tag to indicate verbatim and monospace text. This is handy

“__”

for regions that have an “=” in them.

Chapter 8: Rules for Using Markup 17

8.5 Making notes to be shown at the end

A footnote reference is simply a number in square brackets. To define the footnote, place
this definition at the bottom of your file. ‘footnote-mode’ can be used to greatly facilitate
the creation of these kinds of footnotes.

Footnotes are defined by the same number in brackets occurring at the beginning of a
line. Use footnote-mode’s C-c ! a command, to very easily insert footnotes while typing.
Use C-x C-x to return to the point of insertion.

8.6 Indicating poetic stanzas

Poetry requires that whitespace be preserved, but without resorting to monospace. To
indicate this, use the following markup, reminiscent of email quotations.

> A line of Emacs verse;
> forgive its being so terse.

You can also use the <verse> tag, if you prefer.

<verse>

A line of Emacs verse;
forgive its being so terse.

</verse>

Multiple stanzas may be included in one set of <verse> tags, as follows.

<verse>
A line of Emacs verse;
forgive its being so terse.

In terms of terse verse,
you could do worse.
</verse>

8.7 Lists of items

Lists are given using special characters at the beginning of a line. Whitespace must occur
before bullets or numbered items, to distinguish from the possibility of those characters
occurring in a real sentence.

These are rendered as a bullet list.

Normal text.

- bullet item one
- bullet item two

An enumerated list follows.

Normal text.

1. Enum item one
2. Enum item two

Here is a definition list.

Chapter 8: Rules for Using Markup 18

Terml
This is a first definition
And it has two lines;
no, make that three.

Term2 :: This is a second definition

Nested lists

It is possible to nest lists of the same or different kinds. The “level” of the list is determined
by the amount of initial whitespace.

Normal text.
- Level 1, bullet item one
1. Level 2, enum item one
2. Level 2, enum item two
- Level 1, bullet item two
1. Level 2, enum item three

2. Level 2, enum item four
term :: definition

Breaking list items

If you want to break up a line within any list type, just put one blank line between the end
of the previous line and the beginning of the next line, using the same amount of initial
indentation.

- bullet item 1, line 1
bullet item 1, line 2
1. Enum line 1

Enum line 2
- bullet item 2, line 1

bullet item 2, line 2

8.8 Generation of data tables

Only very simple tables are supported. The syntax is as follows.

Double bars || Separate header fields

Single bars | Separate body fields
Here are more | body fields

Triple bars ||| Separate footer fields

Chapter 8: Rules for Using Markup 19

Some publishing styles require header fields to come first, then footer fields, and then the
body fields. You can use any order for these sections that you like, and Muse will re-order
them for you at publish-time.

If you wish to disable table generation for one Muse file, add the directive
‘#disable-tables t’ to the top of the file.

Other table formats
It is possible to publish very basic Orgtbl-mode style tables.
style | table |

|
+
|
| two | two | |
|
+
[

If you are used to the way that Org Mode publishes these tables, then customize ‘muse-
html-table-attributes’ to the following, in order to get a similar kind of output.

border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"

‘table.el’ style tables are also supported, as long as ‘table.el’ itself supports out-
putting tables for a particular publishing style. At the time of this writing, the “html”,
“latex”, and “docbook” styles are supported by ‘table.el’. Styles derived from these styles
will also work.

to——t————— +-——+
I | one | 1 |
= +———+
| b | two | [
tm——t————— +———t
| c | | 3 |
F——t————— +———t

8.9 Hyperlinks and email addresses with descriptions

A hyperlink can reference a URL, or another page within a Muse project. In addition,
descriptive text can be specified, which should be displayed rather than the link text in
output styles that supports link descriptions. The syntax is as follows.

[[1ink target] [link description]]
[[link target without description]]

Thus, the current maintainer’s homepage for Muse can be found ‘[[http://mwolson.org/projects/Emacs}
or at ‘[[http://mwolson.org/projects/EmacsMuse.html]]’.

8.10 Bare URLs, WikiNames, and InterWiki links

A URL or email address encountered in the input text is published as a hyperlink. These
kind of links are called implicit links because they are not separated from the rest of the
Muse document in any way.

Chapter 8: Rules for Using Markup 20

Some characters in URLs will prevent Muse from recognizing them as implicit links. If
you want to link to a URL containing spaces or any of the characters “|[,"’*()<>"”, you will
have to make the link explicit. The punctuation characters “.;;:” are also not recognized as
part of a URL when they appear at its end. For information on how to make an explicit

link, see Section 8.9 [Hyperlinks and email addresses with descriptions|, page 19.

If the muse-wiki module is loaded, another form of implicit link will be made available.
WikiNames, which are typed in CamelCase, are highlighted and published as links, provided
that the file they refer to exists.

Customization of WikiName recognition may be accomplished by editing the
muse-wiki-wikiword-regexp option and subsequently running (muse-configure-
highlighting ’muse-colors-markupmuse-colors-markup). If you use the Customize
interface, the latter will be done automatically.

The muse-wiki module also allows for InterWiki links. These are similar to WikiWords,
but they specify both the project and page of a file. The names of your project entries in
muse-project-alist will be used as InterWiki names by default. Several examples follow.

Blog: :DocumentingMuse
Projects#EmacsMuse
Website

In the first case, the interwiki delimiter is ‘::’, ‘Blog’ is the project name, and
‘DocumentingMuse’ is the page name. In the second example, ‘#’ is the interwiki delimiter.
If the name of a project occurs by itself in text, like the third case, it will be colorized and
published as a link to the default page of the given project.

Customization of interwiki links may be accomplished by editing the muse-wiki-
interwiki-alist option.

It is also possible to link to an anchor in an interwiki document. This is called a “three-
part link”. Examples of this follow.

Blog: :DocumentingMuse#anchorl
Projects#EmacsMuse#anchor?2

8.11 Publishing and displaying images

Image links

Links to images may be used in either the target or the description, or both. Thus, the
following code will publish as a clickable image that points to http://mwolson.org/.

[[http://mwolson.org/] [/static/logos/site-logo.pngl]
Normally, images in the link part will be inlined.

If you want these images to be published as links instead, place the text “URL:” imme-
diately in front of the link text. An example follows.

[[URL:http://mwolson.org/static/logos/site-logo.png]l]

Displaying images in Muse mode

If a link to a locally-available image is encountered in the link description, Muse mode will
attempt to display it if your version of Emacs permits this.

http://mwolson.org/

Chapter 8: Rules for Using Markup 21

This behavior may be toggled with C-c C-i, or disabled permanently by setting the
muse-colors-inline-images option to nil.

The method for finding images may be altered by customizing the muse-colors-inline-
image-method option. One useful value for this option is muse-colors-use-publishing-
directory, which tells Muse mode to look in the directory where the current file will be
published. The default is to look in the current directory. Relative paths like ‘. ./pics/’
should work for either setting.

Eventually, it is hoped that Muse will be able to copy images from the a “source”
directory to a publishing directory by customizing muse-project-alist, but this has not
been implemented yet.

Publishing simple images

The following example will display correctly and publish correctly if a PNG file called
‘TestLogo.png’ exists in the ‘. ./pics/’ directory. If text is on the same line as the picture,
it will remain so in the output.

[[../myimage.png]]

Publishing images with captions

If you want to add a caption to an image, use the following syntax. This will center the image
(if the output format supports it) and add a centered caption below the picture. Formats
that do not support centering the image will instead leave it against the left margin.

[[../pics/mycat.png] [My cat Dexter]]

Images with captions may only occur in their own paragraphs, with no text on the same
line. Otherwise, the published output will not be syntactically correct.

8.12 Inserting a horizontal line or anchor

Horizontal Rules

Four or more dashes indicate a horizontal rule. Be sure to put blank lines around it, or it
will be considered part of the proceeding or following paragraph!

Anchors

If you begin a line with "#anchor" — where "anchor" can be any word that doesn’t contain
whitespace — it defines an anchor at that point into the document. This point can be
referenced using "page#anchor" as the target in a Muse link.

8.13 Evaluating Emacs Lisp code in documents for
extensibility
Arbitrary kinds of markup can be achieved using the <lisp> tag. With the <lisp> tag,

you may generate whatever output text you wish. The inserted output will get marked up
if the <1isp> tag appears within the main text of the document.

<lisp>(concat "This form gets " "inserted")</lisp>

Note that you should not use the insert command within a set of <lisp> tags, since
the return value from the <lisp> tags will be automatically inserted into the document.

Chapter 8: Rules for Using Markup 22

It is also possible to treat the output as if it were surrounded by the <example>, <src>,
or <verse> tags, by specifying “example”, “src”, or “verse” as the ‘markup’ attribute of the
<lisp> tag.

<lisp markup="example">
(concat "Insert" " me")
</lisp>

Other languages also have tags that cause source code to be evaluated. See Section 8.16
[Tag Summary]|, page 23, for details.

8.14 Support for citing other resources

Example
Here is an example of what citations look like in a Muse document.
#bibsource REFDB

* Title
** Subtitle

Some text before <cite>Miller1999</cite> and after the citation.
This is an author-only citation <cite type="author">Miller1999</cite>.
And this is a year-only citation <cite type="year">Miller1999</cite>.

Finally, this is a multi-head citation
<cite>Miller1999, Andrews2005</cite>.

Overview

The #bibsource directive defines the source of the bibliographies. The following sources
are possible.

e DocBook + RefDB: the string "REFDB"
e LaTeX + bibtex: the name of an appropriate bibtex file
e LaTeX + RefDB: if the input file is called "foo.muse", then set this to "foo.bib"

Citations are encoded as <cite> elements which enclose the citation keys as they are
defined in the bibliography file or database. In multi-head citations, the citation keys have
to be separated by colons or semicolons. The latex and docbook styles translate these to
the proper separator automatically.

The <cite> elements take an optional “type” attribute that defines how the citation is
rendered. If the attribute is missing, you'll get a regular citation according to the bibliogra-
phy style, e.g.” (Miller et al., 1999)”. If the attribute is set to "author", only the name of
the author(s) will be rendered. Accordingly, "year" will cause the year to be printed. This
is useful to create citations like this:

Miller et al. had already shown in a previous publication (1999) that
this is not going to work.

Chapter 8: Rules for Using Markup 23

Remember that refdb-mode (the Emacs interface to RefDB) can retrieve references by
simply marking the citation key and running the refdb-getref-by-field-on-region com-
mand. Later versions of refdb-mode will also allow to insert references as Muse citations
(which is already implemented for DocBook, TEI, and LaTeX documents).

You may have noticed that there is no element to indicate the position of the bibliography.
The latter is always created at a valid position close to the end of the document. The
functions muse-docbook-bibliography and muse-latex-bibliography are called in the
header or footer to generate this content, so it is possible to change the exact position.

8.15 Lines to omit from published output
Use the following syntax to indicate a comment. Comments will not be published.
; Comment text goes here.

That is, only a semi-colon at the beginning of a line, followed by a literal space, will
cause that line to be treated as a comment.

You can alternatively surround the region with the <comment> tag.

If you wish the comment to be published, but just commented out using the comment
syntax of the output format, then set ‘muse-publish-comments-p’ to non-nil.

8.16 Tags that Muse recognizes

Muse has several built-in tags that may prove useful during publishing. See [muse-publish-
markup-tags|, page 54, to see how to customize the tags that Muse uses, as well as make
your own tags.

Only a small subset of these tags are available in header and footer text. The muse-
publish-markup-header-footer-tags option lists the tags that are allowed in headers
and footers.

Syntax
If a tag takes arguments, it will look like this, where “tagname” is the name of the tag.
<tagname argl="stringl" arg2="string2">

If you want the tag to look like it came straight from an XHTML document, you can
alternatively do the following.

<tagname argl="stringl" arg2="string2" />
If a tag surrounds some text, it will look like this.
<tagname>Some text</tagname>
If a tag surrounds a large region, it will look like this.

<tagname>
Some text.
Some more text.
</tagname>

Chapter 8: Rules for Using Markup 24

Tag listing
This is the complete list of tags that Muse accepts, including those that were mentioned in
previous sections.
‘
’ Insert a line break.
Muse will automatically detect paragraphs when publishing by means of blank
lines, so this tag is usually unnecessary.
‘<cite>’ Imsert a citation to another source.

This takes the argument ‘type’, which indicates the type of citation. The valid
types are "author" and "year". If this argument is omitted, include both author
and year in the citation.

The bibliography to use for the citation may be specified by the ‘#bibsource’
directive.

See Section 8.14 [Citations], page 22, for additional information.

‘<class>’ If publishing to HTML, surround the given text with a tag. It takes
one argument called “name” that specifies the “class” attribute of the
tag.

If publishing to a different format, do nothing extra to the text.

‘<code>’ Treat the text surrounded by the tag as if they were enclosed in equal signs,
that is, make it monospace.

‘<command>’
Run a command on the region, replacing the region with the result of the
command. The command is specified with the “interp” argument. If no value
for “interp” is given, pass the entire region to the shell.
The “markup” argument controls how this section is marked up.
If it is omitted, publish the region with the normal Muse rules.
If "nil", do not mark up the region at all, but prevent Muse from further
interpreting it.
If "example", treat the region as if it was surrounded by the <example> tag.
If "src", treat the included text as if it was surrounded by the <src> tag. You
should also specify the “lang” attribute if doing this.
If "verse", treat the region as if it was surrounded by the <verse> tag, to
preserve newlines.
Otherwise, it should be the name of a function to call, with the buffer narrowed
to the region.

‘<comment>’
Treat the entire region as a comment. If the option muse-publish-comments-p
is nil, delete the region, otherwise publish it using the comment syntax of the
current publishing style.

‘<contents>’

Publish a Table of Contents. This will either be inserted in-place or at the
beginning of the document, depending on your publishing style. It does not
have a delimiting tag.

Chapter 8: Rules for Using Markup 25

By default, only 2 levels of headings will be included in the generated Table of
Contents. To change this globally, customize the muse-publish-contents-depth
option. To change this only for the current tag, use the “depth” argument.

‘<div>’ Insert a <div> tag into HT'ML documents, and do not insert anything special
for other non-HTML publishing formats.

If the “style” argument is provided, include it with the published <div> tag.
Likewise for the “id” argument.

‘<example>’
Publish the region in monospace, preserving the newlines in the region. This is
useful for snippets of code.

‘<include>’
Insert the given file at the current location during publishing. The basic use of
this tag is as follows, replacing “included_file” with the name of the file that
you want to include.

<include file="included_file">
The “markup” argument controls how this section is marked up.
If it is omitted, publish the included text with the normal Muse rules.
If "nil", do not mark up the included text at all.

If "example", treat the included text as if it was surrounded by the <example>
tag.

If "src", treat the included text as if it was surrounded by the <src> tag. You
should also specify the “lang” attribute if doing this.

If "verse", treat the included text as if it was surrounded by the <verse> tag,
to preserve newlines.

Otherwise, it should be the name of a function to call after inserting the file
with the buffer narrowed to the section inserted.

‘<1isp>’ Evaluate the Emacs Lisp expressions between the initial and ending tags. The
result is then inserted into the document, so you do not need to explicitly call
insert. All text properties are removed from the resulting text.

This tag takes the “markup” argument. See the description of <command> for
details.

‘<literal>’
Make sure that the text enclosed by this tag is published without escaping it
in any way. This is useful for inserting markup directly into the published
document, when Muse does not provide the desired functionality.

‘<markup>’
Mark up the text between the initial and ending tags. The markup command to
use may be specified by the “function” argument. The standard Muse markup
routines are used by default if no “function” argument is provided.

This is useful for marking up regions in headers and footers. One example that
comes to mind is generating a published index of all of the files in the current
project by doing the following.

Chapter 8: Rules for Using Markup 26

‘<perl>’

‘<python>’

‘<quote>’

‘<ruby>’

‘<Ksrc>’

<markup><lisp>(muse-index-as-string t t)</lisp></markup>

Run the perl language interpreter on the region, replacing the region with the
result of the command.

This tag takes the “markup” argument. See the description of <command> for
details.

Run the python language interpreter on the region, replacing the region with
the result of the command.

This tag takes the “markup” argument. See the description of <command> for
details.

Publish the region as a blockquote. This will either be inserted in-place or at
the beginning of the document, depending on your publishing style. It does not
have a delimiting tag.

Run the ruby language interpreter on the region, replacing the region with the
result of the command.

This tag takes the “markup” argument. See the description of <command> for
details.

Publish the region using htmlize. The language to use may be specified by the
“lang” attribute.

Muse will look for a function named lang-mode, where lang is the value of the
“lang” attribute.

This tag requires htmlize 1.34 or later in order to work. If this is not satisfied,
or the current publishing style is not HTML-based, Muse will publish the region
like an <example> tag.

‘<verbatim>’

‘Kverse>’

This is used when you want to prevent Muse from trying to interpret some
markup. Surround the markup in <verbatim> and </verbatim>, and it will
not be interpreted.

This tag was used often in previous versions of Muse because they did not
support whole-document escaping of specials. Now, it will only be needed for
other tags, and perhaps footnotes as well.

Preserve the newlines in the region. In formats like HT'ML, newlines are re-
moved by default, hence the need for this tag. In other publishing styles, this
tag may cause the text to be indented slightly in a way that looks nice for
poetry and prose.

Chapter 9: Publishing Various Types of Documents 27

9 Publishing Various Types of Documents

One of the principle features of Muse is the ability to publish a simple input text to a variety
of different output styles. Muse also makes it easy to create new styles, or derive from an
existing style.

9.1 Integrating Muse and pyblosxom.cgi

The Blosxom publishing style publishes a tree of categorised files to a mirrored tree of stories
to be served by blosxom.cgi or pyblosxom.cgi. In other words, each blog entry corresponds
with one file.

9.1.1 Other tools needed for the Blosxom style

You will need to have pyblosxom.cgi or blosxom. cgi installed on a machine that you have
upload access to.

The major difficulty in both of these programs is specifying the date of the entries. Both
programs rely on the file modification time rather than any data contained in the entries
themselves. A plugin is needed in order for these programs to be able to get the correct
date.

PyBlosxom

There are two different ways of accomplishing this in pyblosxom. The first way involves
gathering the timestamps (as specified by the #date directive) into one file and then sending
that file along with published entries to the webserver.

The second will read each file at render time and parse the #postdate directive. Muse
will translate the #date directive into #postdate at publish time, so you don’t have to do
any extra work.

Placing timestamps in one file

The following additional components are required in order to make the date of blog entries
display as something sensible.

1. A script to gather date directives from the entire blog tree into a single file. The file
must associate a blog entry with a date.

2. A plugin for (py)blosxom that reads this file.

These 2 things are provided for pyblosxom.cgi in the ‘contrib/pyblosxom’ subdirec-
tory. ‘getstamps.py’ provides the former service, while ‘hardcodedates.py’ provides the
latter service.

Here is a sample listing from my ‘timestamps’ file, which maps each file to a date. This
can really be in any format, as long as your date-gathering script and your plugin can both
understand it.

2005-04-01-14-16 personal/paper_cranes
2005-03-21 personal/spring_break_over
2004-10-24 personal/finished_free_culture
The script ‘contrib/pyblosxom/make-blog’ demonstrates how to call ‘getstamps.py’.
Note that you will need to set the current directory to where your Muse files are, execute
‘getstamps.py’, and then move the generated timestamps file to your publishing directory.

Chapter 9: Publishing Various Types of Documents 28

Getting timestamp from entry while rendering

Alternately, the pyblosxom metadate plugin may be used. On the plus side, there is no
need to run a script to gather the date. On the downside, each entry is read twice rather
than once when the page is rendered. Set the value of muse-blosxom-use-metadate to
non-nil to enable adding a #postdate directive to all published files. You can do this by:

M-x customize-variable RET muse-blosxom-use-metadate RET

With the metadate plugin installed in pyblosxom, the date set in this directive will
be used instead of the file’s modification time. The plugin is included with Muse at
‘contrib/pyblosxom/metadate.py’.

Blosxom

It is also possible to use Blosxom, which is written in Perl, to serve blog entries that were
published with Muse. The steps are as follows.

1. Download and install blosxom from http://blosxom.sourceforge.net/.
2. Install the metadate plugin. It is available in ‘contrib/blosxom/metadate_0_0_3".

3. Every time you make a new blog entry, change to the blosxom data directory and
execute the ‘contrib/blosxom/getstamps.pl’ script. This script has only recently
been made, and may still have some bugs, so use with caution.

9.1.2 Format of a Blosxom entry and automation

Fach Blosxom file must include ‘#date yyyy-mm-dd’, or optionally the longer ‘#date yyyy-
mm-dd-hh-mm’, a title (using the #title directive), plus whatever normal content is de-
sired.

The date directive is not used directly by pyblosxom.cgi or this program. You need to
have the two additional items from the former section to make use of this feature.

There is a function called muse-blosxom-new-entry that will automate the process of
making a new blog entry. To make use of it, do the following.

e Customize muse-blosxom-base-directory to the location that your blog entries are
stored.

e Assign the muse-blosxom-new-entry function to a key sequence. I use the following
code to assign this function to C-c p 1°.

(global-set-key "\C-cpl" ’muse-blosxom-new-entry)

e You should create your directory structure ahead of time under your base directory.
These directories, which correspond with category names, may be nested.

e When you enter this key sequence, you will be prompted for the category of your entry
and its title. Upon entering this information, a new file will be created that corre-
sponds with the title, but in lowercase letters and having special characters converted
to underscores. The title and date directives will be inserted automatically.

9.1.3 Blosxom styles and options provided

The following styles and options are available in the Blosxom publishing style.

http://blosxom.sourceforge.net/

Chapter 9: Publishing Various Types of Documents 29

Styles provided

blosxom-html
Publish Blosxom entries in HTML form.

blosxom—-xhtml
Publish Blosxom entries in XHTML form.

Options provided

muse-blosxom-extension
Default file extension for publishing Blosxom files.

muse-blosxom-header
Header used for publishing Blosxom files.
This may be text or a filename.
muse-blosxom-footer
Footer used for publishing Blosxom files.
This may be text or a filename.
muse-blosxom-base-directory
Base directory of blog entries, used by muse-blosxom-new-entry.

This is the top-level directory where your blog entries may be found locally.

9.2 Publishing entries into a compilation

This publishing style is used to output “books” in LaTeX or PDF format.

Each page will become a separate chapter in the book, unless the style keyword
‘:nochapters’ is used, in which case they are all run together as if one giant chapter.

One way of publishing a book is to make a project for it, add the project to muse-
project-alist, and use the book-pdf style with a very specific ‘:include’ value to specify
some page whose contents will be checked for the values of #title and #date, and whose
name will be used in the output file. Then to publish the book, visit the aforementioned
page and use C-c C-t or C-c C-p to trigger the publishing process. An example muse-
project-alist for this method follows.

(setq muse-project-alist
>(("MyNotes" (:nochapters t ; do automatically add chapters
:book-chapter "Computer Science"

"~/Notes/cs"

:book-chapter "Mathematics"

"~/Notes/math"

:book-chapter "Emacs"

"~/Notes/emacs"

:book-end t ; the rest will not be placed in the book]]
"~/Notes" ; so we can find the notes-anthology pagell
"~/Notes/private"

:force-publish ("index")
:default "index")

Chapter 9: Publishing Various Types of Documents 30

(:base "book-pdf"

:include "/notes-anthology[~/]*$"

:path "~ /public_html/notes")
;; other publishing styles for each directory go here,
;3 1f desired

)

In this example, there would be a file called ‘“/Notes/notes-anthology.muse’,
which would contain just the following. The resulting book would be published to
‘“/public_html/notes/notes-anthology.pdf’.

#title My Technology Ramblings

Another way is to call the muse-book-publish-project function manually, with a cus-
tom project entry. An example of this may be found in John Wiegley’s configuration file at
‘examples/johnw/muse-init.el’, in the muse-publish-my-books function.

Styles provided

book-latex
Publish a book in LaTeX form. The header and footer are different than the
normal LaTeX publishing mode.

book-pdf Publish a book in PDF form. The header and footer are different than the
normal PDF publishing mode.
Options provided

muse-book-before-publish-hook
A hook run in the book buffer before it is marked up.

muse-book-after-publish-hook
A hook run in the book buffer after it is marked up.

muse-book-latex-header
Header used for publishing books to LaTeX.

This may be text or a filename.

muse-book-latex-footer
Footer used for publishing books to LaTeX.

This may be text or a filename.

9.3 Publishing ConTeXt documents

This publishing style is capable of producing ConTeXt or PDF documents.

If you wish to publish PDF documents based on ConTeXt, you will need to have it
installed. For Debian and Ubuntu, this can be accomplished by installing the “texlive”
package.

Styles provided

context Publish a ConTeXt document.

Chapter 9: Publishing Various Types of Documents 31

context-pdf
Publish a PDF document, using an external ConTeXt document conversion
tool.

context-slides
Produce slides from a ConTeXt document.

Here is an example of a slide.
* First Slide

[[Some-sort-of-cute-image.png]]
** A subheading

- A bullet point.
- Another bullet point.

* Second Slide

and so on

context-slides-pdf
Publish a PDF document of ConTeXt slides.

Options provided

muse-context-extension
Default file extension for publishing ConTeXt files.

muse-context-pdf-extension
Default file extension for publishing ConTeXt files to PDF.

muse-context-pdf-program
The program that is called to generate PDF content from ConTeXt content.

muse-context-pdf-cruft
Extensions of files to remove after generating PDF output successfully.

muse—-context-header
Header used for publishing ConTeXt files.
This may be text or a filename.
muse—-context-footer
Footer used for publishing ConTeXt files.
This may be text or a filename.
muse-context-markup-regexps
List of markup regexps for identifying regions in a Muse page.
For more on the structure of this list, See [muse-publish-markup-regexps],
page 47.

muse-context-markup-functions
An alist of style types to custom functions for that kind of text.

Chapter 9: Publishing Various Types of Documents 32

For more on the structure of this list, See [muse-publish-markup-functions],
page 47.

muse-context-markup-strings
Strings used for marking up text.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-context-slides-header
Header for publishing a presentation (slides) using ConTeXt.

Any of the predefined modules, which are available in the tex/context/base
directory, can be used by writing a "module" directive at the top of the Muse
file; if no such directive is provided, module pre-01 is used. Alternatively, you
can use your own style ("mystyle", in this example) by replacing "\usemodule[]"
with "\input mystyle".

This may be text or a filename.

muse-context-slides—markup-strings
Strings used for marking up text in ConTeXt slides.

muse-context-markup-specials-document
A table of characters which must be represented specially. These are applied
to the entire document, sans already-escaped regions.

muse-context-markup-specials-example
A table of characters which must be represented specially. These are applied
to example> regions.

With the default interpretation of <example> regions, no specials need to be
escaped.

muse-context-markup-specials-literal
A table of characters which must be represented specially. This applies to
=monospaced text= and <code> regions.

muse-context-markup-specials-url
A table of characters which must be represented specially. These are applied
to URLs.

muse-context-markup-specials-image
A table of characters which must be represented specially. These are applied
to image filenames.

muse-context-permit-contents-tag
If nil, ignore <contents> tags. Otherwise, insert table of contents.

Most of the time, it is best to have a table of contents on the first page, with a
new page immediately following. To make this work with documents published
in both HTML and ConTeXt, we need to ignore the <contents> tag.

If you don’t agree with this, then set this option to non-nil, and it will do what
you expect.

Chapter 9: Publishing Various Types of Documents 33

9.4 Publishing in DocBook XML form
This publishing style is used to generate DocBook XML files.

Styles provided

docbook Publish a file in Docbook form.

Options provided

This publishing style uses the same options for markup up special characters as the “xml”
publishing style. See Section 9.11 [XML], page 45, for details.

muse-docbook-extension
Default file extension for publishing DocBook XML files.

muse—-docbook-header

Header used for publishing DocBook XML files.

This may be text or a filename.

muse-docbook-footer
Footer used for publishing DocBook XML files.

This may be text or a filename.

muse-docbook-markup-regexps
List of markup rules for publishing a Muse page to DocBook XML.

muse-docbook-markup-functions
An alist of style types to custom functions for that kind of text.

muse-docbook-markup-strings
Strings used for marking up text.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-docbook-encoding-default
The default Emacs buffer encoding to use in published files. This will be used
if no special characters are found.

muse-docbook-charset-default
The default DocBook XML charset to use if no translation is found in muse-
xml-encoding-map.

9.5 Publishing in HTML or XHTML form
This publishing style is capable of producing HTML or XHTML documents.

Styles provided
html Supports publishing to HTML 4.0 and HTML 4.01, Strict or Transitional.
xhtml Supports publishing to XHTML 1.0 and XHTML 1.1, Strict or Transitional.

Chapter 9: Publishing Various Types of Documents 34

Options provided
If an HTML option does not have a corresponding XHTML option, it will be used for both
of these publishing styles.

These publishing styles use the same options for markup up special characters as the
“xml” publishing style. See Section 9.11 [XML], page 45, for details.

muse-html-extension
Default file extension for publishing HTML files.

muse-xhtml-extension
Default file extension for publishing XHTML files.

muse-html-style-sheet
Store your stylesheet definitions here.

This is used in muse-html-header. You can put raw CSS in here or a <1ink>
tag to an external stylesheet. This text may contain <lisp> markup tags.

If you are publishing to XHTML, then customize the muse-xhtml-style-sheet
option instead.
muse-xhtml-style-sheet
Store your stylesheet definitions here.
This is used in muse-xhtml-header. You can put raw CSS in here or a <1ink>
tag to an external stylesheet. This text may contain <lisp> markup tags.
muse-html-header
Header used for publishing HTML files.
This may be text or a filename.
muse-html-footer
Footer used for publishing HTML files.
This may be text or a filename.
muse-xhtml-header
Header used for publishing XHTML files.
This may be text or a filename.
muse-xhtml-footer
Footer used for publishing XHTML files.
This may be text or a filename.
muse-html-anchor-on-word
When true, anchors surround the closest word.

This allows you to select them in a browser (i.e. for pasting), but has the side-
effect of marking up headers in multiple colors if your header style is different
from your link style.

muse-html-table-attributes
The attribute to be used with HTML <table> tags.

If you want to make more-complicated tables in HTML, surround the HTML
with the literal tag, so that it does not get escaped.

Chapter 9: Publishing Various Types of Documents 35

muse-html-markup-regexps
List of markup rules for publishing a Muse page to HTML.

muse-html-markup-functions
An alist of style types to custom functions for that kind of text.

muse-html-markup-strings
Strings used for marking up text as HT'ML.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-xhtml-markup-strings
Strings used for marking up text as XHTML.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-html-markup-tags
A list of tag specifications, for specially marking up HTML. See [muse-publish-
markup-tags|, page 54, for more information.

muse-html-meta-http-equiv
The http-equiv attribute used for the HTML <meta> tag.

muse-html-meta-content-type
The content type used for the HTML <meta> tag.

If you are striving for XHTML 1.1 compliance, you may want to change this to
“application /xhtml+xml”.

muse-html-meta-content-encoding
The charset to append to the HTML <meta> tag.

If set to the symbol 'detect, use muse-xml-encoding-map to try and determine
the HTML charset from emacs’s coding. If set to a string, this string will be
used to force a particular charset.

muse-html-charset-default
The default HTML meta charset to use if no translation is found in muse-xml-
encoding-map.

muse-html-encoding-default
The default Emacs buffer encoding to use in published files. This will be used
if no special characters are found.

9.6 Integrating with ikiwiki

Tkiwiki is a wiki compiler (http://ikiwiki.info/). Emacs Muse can be used as a source
format for Tkiwiki pages with the plugin ‘TkiWiki::Plugin: :muse’.

The ‘lisp/muse-ikiwiki.el’ file provides publishing functions and styles for Tkiwiki.
The plugin for Ikiwiki to recognize Muse files is provided by the ‘examples/ikiwiki/muse’
file. Two sample init files are available in the ‘examples/ikiwiki’ directory. Configure
your ‘ikiwiki.setup’ file so that the muse_init variable has the location of your Muse
init file.

http://ikiwiki.info/

Chapter 9: Publishing Various Types of Documents 36

If you are using CGI, The directory ‘examples/ikiwiki/IkiWiki’ must be copied
to the same directory as the CGI script that lkiwiki generates. ~When publishing
your wiki, the PERLS5LIB environment variable must contain the path to the
‘examples/ikiwiki/TkiWiki’ directory.

Styles provided
ikiwiki Supports publishing XHTML output that Ikiwiki can understand.

Options provided
muse-ikiwiki-header
Header used for publishing Ikiwiki output files.
This may be text or a filename.
muse-ikiwiki-footer
Footer used for publishing Ikiwiki output files.

This may be text or a filename.

Other relevant options

muse-colors-evaluate-lisp-tags
Specify whether to evaluate the contents of <1isp> tags at display time. If nil,
don’t evaluate them. If non-nil, evaluate them.

The actual contents of the buffer are not changed, only the displayed text.
muse-html-src-allowed-modes

Modes that we allow the <src> tag to colorize. If t, permit the <src> tag to
colorize any mode.

If a list of mode names, such as ’> ("html" "latex"), and the lang argument to
<src> is not in the list, then use fundamental mode instead.

muse-publish-enable-dangerous-tags
If non-nil, publish tags like <1isp> and <command> that can call external pro-
grams or expose sensitive information. Otherwise, ignore tags like this.

This is useful to set to nil when the file to publish is coming from an untrusted
source.

9.7 Keeping a journal or blog

The module facilitates the keeping and publication of a journal. When publishing to HTML,
it assumes the form of a web log, or blog.
The input format for each entry is as follows.

* 20040317: Title of entry
text for the entry.

<gotd>
"You know who you are. It comes down to a simple gut check: You

Chapter 9: Publishing Various Types of Documents 37

either love what you do or you don’t. Period." -- P. Bronson
</qotd>

The "qotd", or Quote of the Day, is entirely optional. When generated to HTML, this
entry is rendered as the following.

<div class="entry">
<div class="entry-qotd">
<h3>Quote of the Day:</h3>
<p>"You know who you are. It comes down to a simple gut
check: You either love what you do or you don’t. Period."
-- P. Bronson</p>
</div>
<div class="entry-body">
<div class="entry-head">
<div class="entry-date">
March 17, 2004
</div>
<div class="entry-title">
<h2>Title of entry</h2>
</div>
</div>
<div class="entry-text">
<p>Text for the entry.</p>
</div>
</div>
</div>

The plurality of "div" tags makes it possible to display the entries in any form you wish,
using a CSS style.

Also, an .RDF file can be generated from your journal by publishing it with the "rdf"
style. It uses the first two sentences of the first paragraph of each entry as its "description",
and auto-generates tags for linking to the various entries.

muse-project-alist considerations

If you wish to publish an RDF or RSS feed, it is important to include the ‘:base-url’
attribute in your muse-project-alist entry for your Journal projects. An example follows.

(setq muse-project-alist
>(("Journal" ("~/Journal/"
:default "journal")
(:base "journal-rss"
:base-url "http://example.org/journal/"
:path "“/public_html/journal"))))

Styles provided

journal-html
Publish journal entries as an HTML document.

Chapter 9: Publishing Various Types of Documents 38

journal-xhtml
Publish journal entries as an XHTML document.

journal-latex
Publish journal entries as a LaTeX document.

journal-pdf
Publish journal entries as a PDF document.

journal-book-latex
Publish journal entries as a LaTeX book.

journal-book-pdf
Publish journal entries as a PDF book.

journal-rdf

Publish journal entries as an RDF file (RSS 1.0).

journal-rss

Publish journal entries as an RSS file (RSS 2.0).

journal-rss-entry
Used internally by journal-rss and journal-rdf for publishing individual
entries.

Options provided

muse-journal-heading-regexp
A regexp that matches a journal heading.
Paren group 1 is the ISO date, group 2 is the optional category, and group 3 is
the optional heading for the entry.

muse-journal-date-format
Date format to use for journal entries.

muse-journal-html-heading-regexp
A regexp that matches a journal heading from an HTML document.
Paren group 1 is the ISO date, group 2 is the optional category, and group 3 is
the optional heading for the entry.
muse-journal-html-entry-template
Template used to publish individual journal entries as HT'ML.
This may be text or a filename.

muse-journal-latex-section
Template used to publish a LaTeX section.

muse-journal-latex-subsection
Template used to publish a LaTeX subsection.

muse-journal-markup-tags
A list of tag specifications, for specially marking up Journal entries.
See [muse-publish-markup-tags], page 54, for more information.

This is used by journal-latex and its related styles, as well as the journal-
rss-entry style, which both journal-rdf and journal-rss use.

Chapter 9: Publishing Various Types of Documents 39

muse-journal-rdf-extension
Default file extension for publishing RDF (RSS 1.0) files.

muse-journal-rdf-base-url
The base URL of the website referenced by the RDF file.

muse-journal-rdf-header
Header used for publishing RDF (RSS 1.0) files.

This may be text or a filename.

muse-journal-rdf-footer
Footer used for publishing RDF (RSS 1.0) files.

This may be text or a filename.

muse-journal-rdf-date-format
Date format to use for RDF entries.

muse-journal-rdf-entry-template
Template used to publish individual journal entries as RDF.
This may be text or a filename.
muse-journal-rdf-summarize-entries
If non-nil, include only summaries in the RDF file, not the full data.
The default is nil, because this annoys some subscribers.
muse-journal-rss-heading-regexp
A regexp that matches a journal heading from an HTML document.
Paren group 1 is the ISO date, group 2 is the optional category, and group 3 is
the optional heading for the entry.

muse-journal-rss-extension
Default file extension for publishing RSS 2.0 files.

muse-journal-rss-base-url
The base URL of the website referenced by the RSS file.

muse-journal-rss-header
Header used for publishing RSS 2.0 files.
This may be text or a filename.
muse-journal-rss-footer
Footer used for publishing RSS 2.0 files.
This may be text or a filename.

muse-journal-rss—-date-format
Date format to use for RSS 2.0 entries.

muse-journal-rss-entry-template
Template used to publish individual journal entries as RSS 2.0.
This may be text or a filename.

muse-journal-rss-enclosure-types—-alist
File types that are accepted as RSS enclosures.

Chapter 9: Publishing Various Types of Documents 40

This is an alist that maps file extension to content type.
Useful for podcasting.
muse-journal-rss-summarize-entries
If non-nil, include only summaries in the RSS file, not the full data.
The default is nil, because this annoys some subscribers.
muse-journal-rss-markup-regexps
List of markup rules for publishing a Muse journal page to RSS.
For more information on the structure of this list, See [muse-publish-markup-
regexps|, page 47.
muse-journal-rss-markup-functions
An alist of style types to custom functions for that kind of text.

For more on the structure of this list, See [muse-publish-markup-functions],
page 47.

9.8 Publishing LaTeX documents

This publishing style is capable of producing LaTeX or PDF documents.

If you wish to publish PDF documents, you will need to have a good LaTeX installation.
For Debian and Ubuntu, this can be accomplished by installing the “tetex-bin” and “tetex-
extra” packages. TeX fonts are also a must.

If your LaTeX installation has the file ‘grffile.sty’, which may be found in the
‘texlive-latex-recommended’ package for Debian and Ubuntu, then consider using it by
adding the following to your header file. This allows spaces in filenames to work.

\usepackage{grffile}

Styles provided

latex Publish a LaTeX document.
pdf Publish a PDF document, using an external LaTeX document conversion tool.
latexcjk Publish a LaTeX document with CJK (Chinese) encodings.

pdfcjk Publish a PDF document with CJK (Chinese) encodings, using an external
LaTeX document conversion tool.

slides Publish a LaTeX document that uses the Beamer extension. This is suitable
for producing slides.
Here is an example of a slide.

<slide title="First Slide">
Everything between the slide tags composes this slide.

[[Some-sort-of-cute-image.png]]
- A bullet point.

- Another bullet point.
</slide>

Chapter 9: Publishing Various Types of Documents 41

slides-pdf
Publish a PDF document of slides, using the Beamer extension.

lecture—-notes
Publish a LaTeX document that uses the Beamer extension. This is suitable
for producing lecture notes.

This can also use the <slide> tag.

lecture-notes-pdf
Publish a PDF document of lecture notes, using the Beamer extension.

Options provided

muse-latex—-extension
Default file extension for publishing LaTeX files.

muse-latex-pdf-extension
Default file extension for publishing LaTeX files to PDF.

muse-latex-pdf-browser
The program to use when browsing a published PDF file.
This should be a format string.

muse-latex-pdf-program
The program that is called to generate PDF content from LaTeX content.

muse-latex-pdf-cruft
Extensions of files to remove after generating PDF output successfully.

muse-latex-header
Header used for publishing LaTeX files.
This may be text or a filename.
muse-latex-footer
Footer used for publishing LaTeX files.
This may be text or a filename.

muse-latexcjk-header

Header used for publishing LaTeX files (CJK).

This may be text or a filename.
muse-latexcjk-footer

Footer used for publishing LaTeX files (CJK).

This may be text or a filename.
muse-latex-slides-header

Header for publishing of slides using LaTeX.

This may be text or a filename.

You must have the Beamer extension for LaTeX installed for this to work.
muse-latex-lecture—-notes-header

Header publishing of lecture notes using LaTeX.

This may be text or a filename.

You must have the Beamer extension for LaTeX installed for this to work.

Chapter 9: Publishing Various Types of Documents 42

muse-latex-markup-regexps
List of markup regexps for identifying regions in a Muse page.

For more on the structure of this list, See [muse-publish-markup-regexps|,
page 47.

muse-latex-markup-functions
An alist of style types to custom functions for that kind of text.

For more on the structure of this list, See [muse-publish-markup-functions],
page 47.

muse-latex-markup-strings
Strings used for marking up text.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-latex-slides-markup-tags
A list of tag specifications, for specially marking up LaTeX slides.

muse-latexcjk-encoding-map
An alist mapping emacs coding systems to appropriate CJK codings. Use the
base name of the coding system (ie, without the -unix).

muse-latexcjk-encoding-default
The default Emacs buffer encoding to use in published files.

This will be used if no special characters are found.

muse-latex-markup-specials—-document
A table of characters which must be represented specially. These are applied
to the entire document, sans already-escaped regions.

muse-latex-markup-specials—-example
A table of characters which must be represented specially. These are applied
to example> regions.

With the default interpretation of <example> regions, no specials need to be
escaped.

muse-latex-markup-specials-literal
A table of characters which must be represented specially. This applies to
=monospaced text= and <code> regions.

muse-latex-markup-specials-url
A table of characters which must be represented specially. These are applied
to URLs.

muse-latex-markup-specials-image
A table of characters which must be represented specially. These are applied
to image filenames.

muse-latex-permit-contents-tag
If nil, ignore <contents> tags. Otherwise, insert table of contents.
Most of the time, it is best to have a table of contents on the first page, with a
new page immediately following. To make this work with documents published
in both HTML and LaTeX, we need to ignore the <contents> tag.

Chapter 9: Publishing Various Types of Documents 43

If you don’t agree with this, then set this option to non-nil, and it will do what
you expect.

9.9 Publish a poem to LaTeX or PDF

The muse-poem module makes it easy to attractively publish and reference poems in the
following format, using the "memoir" module for LaTeX publishing. It will also markup
poems for every other output style, though none are nearly as pretty.

Title

Body of poem

Annotations, history, notes, etc.

Once a poem is written in this format, just publish it to PDF using the poem-pdf style.
To make an inlined reference to a poem that you’ve written — for example, from a blog page
— there is a "poem" tag defined by this module.

<poem title="name.of.poem.page">

Let’s assume the template above was called ‘name.of .poem.page’; then the above tag
would result in this inclusion.

**x Title

> Body of poem

John Wiegley uses this module for publishing all of the poems on his website, which are
at http://www.newartisans.com/johnw/poems.html.

Styles provided

poem-latex
Publish a poem in LaTeX form.

poem-pdf Publish a poem to a PDF document.

chapbook-latex
Publish a book of poems in LaTeX form.

chapbook-pdf
Publish a book of poems to a PDF document.

Options provided
muse-poem-latex-header
Header used for publishing LaTeX poems.

This may be text or a filename.

muse-poem-latex-footer
Footer used for publishing LaTeX files.

This may be text or a filename.

http://www.newartisans.com/johnw/poems.html

Chapter 9: Publishing Various Types of Documents 44

muse-poem-markup-strings
Strings used for marking up poems.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-chapbook-latex-header
Header used for publishing a book of poems in LaTeX form.

This may be text or a filename.

muse-chapbook-latex-footer
Footer used for publishing a book of poems in LaTeX form.

This may be text or a filename.

muse-poem-chapbook-strings
Strings used for marking up books of poems.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

9.10 Publish entries to Texinfo format or PDF

Rules for publishing a Muse file as a Texinfo article.

Styles provided
texi Publish a file in Texinfo form.
info Generate an Info file from a Muse file.

info-pdf Publish a file in PDF form.

Options provided

muse-texinfo-process-natively
If non-nil, use the Emacs ‘texinfmt’ module to make Info files.

muse-texinfo-extension
Default file extension for publishing Texinfo files.

muse-texinfo-info-extension
Default file extension for publishing Info files.

muse-texinfo-pdf-extension
Default file extension for publishing PDF files.

muse-texinfo-header

Text to prepend to a Muse page being published as Texinfo.

This may be text or a filename. It may contain <1isp> markup tags.
muse-texinfo-footer

Text to append to a Muse page being published as Texinfo.

This may be text or a filename. It may contain <1isp> markup tags.

Chapter 9: Publishing Various Types of Documents 45

muse-texinfo-markup-regexps
List of markup rules for publishing a Muse page to Texinfo.

For more on the structure of this list, See [muse-publish-markup-regexps|,
page 47.

muse-texinfo-markup-functions
An alist of style types to custom functions for that kind of text.
For more on the structure of this list, See [muse-publish-markup-functions],
page 47.

muse-texinfo-markup-strings
Strings used for marking up text.
These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

muse-texinfo-markup-specials
A table of characters which must be represented specially.

muse-texinfo-markup-specials
A table of characters which must be represented specially. These are applied
to URLs.

9.11 Publish entries to XML

Muse is capable of publishing XML documents, with the help of the ‘muse-xml.el’ module.

A RelaxNG schema is available as part of the Muse distribution in the ‘etc/muse.rnc’
file.

Styles provided
xml Publish a file in XML form.

Options provided

muse-xml-encoding-map
An alist mapping Emacs coding systems to appropriate XML charsets. Use the
base name of the coding system (i.e. without the -unix).

muse-xml-markup-specials
A table of characters which must be represented specially in all XML-like
markup formats.

muse-xml-markup-specials-url-extra
A table of characters which must be represented specially in all XML-like
markup formats.

These are extra characters that are escaped within URLs.

muse-xml-extension
Default file extension used for publishing XML files.

muse-xml-header
Header used for publishing XML files.

This may be text or a filename.

Chapter 9: Publishing Various Types of Documents 46

muse-xml-footer
Footer used for publishing XML files.

This may be text or a filename.
muse-xml-markup-regexps
List of markup rules for publishing a Muse page to XML.
For more on the structure of this list, See [muse-publish-markup-regexps],
page 47.
muse-xml-markup-functions
An alist of style types to custom functions for that kind of text.
For more on the structure of this list, See [muse-publish-markup-functions],
page 47.
muse-xml-markup-strings
Strings used for marking up text.
These cover the most basic kinds of markup, the handling of which differs little
between the various styles.
muse-xml-encoding-default
The default Emacs buffer encoding to use in published files.
This will be used if no special characters are found.
muse-xml-charset-default

The default XML charset to use if no translation is found in muse-xml-
encoding-map.

Chapter 10: Making your own publishing styles 47

10 Making your own publishing styles

10.1 Specifying functions to mark up text

muse-publish-markup-functions
An alist of style types to custom functions for that kind of text.

This is used by publishing styles to attempt to minimize the amount of custom regexps
that each has to define. ‘muse-publish’ provides rules for the most common types of
markup.

Each member of the list is of the following form.
(SYMBOL FUNCTION)

e SYMBOL Describes the type of text to associate with this rule. muse-publish-
markup-regexps maps regexps to these symbols.

e FUNCTION Function to use to mark up this kind of rule if no suitable function is
found through the ‘:functions’ tag of the current style.

10.2 Markup rules for publishing
muse-publish-markup-regexps
List of markup rules for publishing a page with Muse.

The rules given in this variable are invoked first, followed by whatever rules are specified
by the current style.
Each member of the list is either a function, or a list of the following form.
(REGEXP/SYMBOL TEXT-BEGIN-GROUP REPLACEMENT-TEXT/FUNCTION/SYMBOL)
e REGEXP A regular expression, or symbol whose value is a regular expression, which
is searched for using ‘re-search-forward’.
e TEXT-BEGIN-GROUP The matching group within that regexp which denotes the
beginning of the actual text to be marked up.
e REPLACEMENT-TEXT A string that will be passed to ‘replace-match’.

If it is not a string, but a function, it will be called to determine what the replacement
text should be (it must return a string). If it is a symbol, the value of that symbol
should be a string.

The replacements are done in order, one rule at a time. Writing the regular expressions
can be a tricky business. Note that case is never ignored. ‘case-fold-search’ is always bound
to nil while processing the markup rules.

Publishing order
This is the order that the publishing rules are consulted, by default. This may be changed

by customizing muse-publish-markup-regexps.

trailing and leading whitespace
Remove trailing and leading whitespace from a file.

Chapter 10: Making your own publishing styles 48

directive
‘#directive’
This is only recognized at the beginning of a file.
comment ‘; a commented line’
tag ‘<tag>’
comment ‘; comment’

explicit links
Prevent emphasis characters in explicit links from being marked up.

Don’t actually publish them here, just add a special no-emphasis text property.

word Whitespace-delimited word, possibly with emphasis characters
This function is responsible for marking up emphasis and escaping some spe-
cials.

heading ‘** Heading’

Outline-mode style headings.

enddots ‘....’

These are ellipses with a dot at end.
dots o)

Ellipses.
rule f—m—

Horizontal rule or section separator.

no-break-space

(~~

Prevent lines from being split before or after these characters.

line-break
L
7

Break a line at point.
fn-sep ‘Footnotes:’

Beginning of footnotes section.
footnote ‘[1]’

Footnote definition or reference. If at beginning of line, it is a definition.

list
o ‘1.7
o ‘-
e ‘term ::’
Numbered list, item list, or term definition list.
table-el

‘table.el’ style tables

Chapter 10: Making your own publishing styles 49

table ‘table | cells’
Muse tables or orgtbl-mode style tables.

quote spaces before beginning of text
Blockquotes.

emdash -
2-wide dash

verse ‘> verse text’

anchor ‘#anchor’

link ‘[[explicit] [1inks]]’

url ‘http://example.com/’

email ‘bare-email@example.com’

10.3 Strings specific to a publishing style

Markup strings are strings used for marking up text for a particular style.

These cover the most basic kinds of markup, the handling of which differs little between
the various styles.

Available markup strings
image-with-desc
An image and a description.
Argument 1: image without extension. Argument 2: image extension. Argu-
ment 3: description.
image An inlined image.
Argument 1: image without extension. Argument 2: image extension.
image-link
An image with a link around it.
Argument 1: link. Argument 2: image without extension. Argument 3: image
extension.
anchor-ref
A reference to an anchor on the current page.
Argument 1: anchor name. Argument 2: description if one exists, or the original
link otherwise.
url A URL without a description.
Argument 1: URL.

link A link to a Muse page with a description.

Argument 1: link. Argument 2: description if one exists, or the original link
otherwise.

Chapter 10: Making your own publishing styles 50

link-and-anchor
A link to a Muse page with an anchor, and a description.

Argument 1: link. Argument 2: anchor name. Argument 3: description if one
exists, or the original link otherwise. Argument 4: link without an extension.

email-addr
A link to an email address.

Argument 1: email address. Argument 2: email address.

anchor An anchor.

Argument 1: name of anchor.

emdash A 2-length dash.

Argument 1: Initial whitespace. Argument 2: Terminating whitespace.

comment-begin
Beginning of a comment.

comment-end
End of a comment.

rule A horizontal line or space.

no-break-space
A space that separates two words which are not to be separated.

footnote Beginning of footnote.

footnote—-end
End of footnote.

footnotemark
Mark a reference for the current footnote.

Argument 1: number of this footnote.

footnotemark-end
End of a reference for the current footnote.

footnotetext
Indicate the text of the current footnote.

Argument 1: number of this footnote.

footnotetext-end
End of a footnote text line.

fn-sep Text used to replace “Footnotes:” line.

dots 3 dots.

enddots 4 dots.

part Beginning of a part indicator line. This is used by book publishing.
part-end End of a part indicator line. This is used by book publishing.

chapter Beginning of a chapter indicator line. This is used by book publishing.

Chapter 10: Making your own publishing styles 51

chapter-end
End of a chapter indicator line. This is used by book publishing.
section Beginning of level 1 section indicator line.
Argument 1: level of section; always 1.
section-end
End of level 1 section indicator line.
Argument 1: level of section; always 1.
subsection
Beginning of level 2 section indicator line.
Argument 1: level of section; always 2.
subsection-end
End of level 2 section indicator line.
Argument 1: level of section; always 2.
subsubsection
Beginning of level 3 section indicator line.
Argument 1: level of section; always 3.
subsubsection-end
End of level 3 section indicator line.
Argument 1: level of section; always 3.
section-other
Beginning of section indicator line, where level is greater than 3.
Argument 1: level of section.
section-other-end
End of section indicator line, where level is greater than 3.
Argument 1: level of section.

begin-underline
Beginning of underlined text.

end-underline
End of underlined text.

begin-literal
Beginning of verbatim text. This includes <code> tags and =teletype text=.

end-literal
End of verbatim text. This includes <code> tags and =teletype text=.

begin-emph
Beginning of the first level of emphasized text.

end-emph End of the first level of emphasized text.

begin-more-emph
Beginning of the second level of emphasized text.

Chapter 10: Making your own publishing styles 52

end-more-emph
End of the second level of emphasized text.

begin-most-emph
Beginning of the third (and final) level of emphasized text.

end-most-emph
End of the third (and final) level of emphasized text.

begin-verse
Beginning of verse text.

verse-space
String used to each space that is further indented than the beginning of the
verse.

begin-verse-line

Beginning of a line of verse.
empty-verse-line

End of a line of verse.
begin-last-stanza-line

Beginning of the last line of a verse stanza.

end-last-stanza-line
End of the last line of a verse stanza.

end-verse
End of verse text.

begin-example
Beginning of an example region. To make use of this, an ‘<example>’ tag is
needed.

end-example
End of an example region. To make use of this, an ‘</example>’ tag is needed.

begin-center
Begin a centered line.

end-center

End a centered line.
begin-quote

Begin a quoted region.
end-quote

End a quoted region.
begin-quote-item

Begin a quote paragraph.
end-quote-item

End a quote paragraph.
begin-uli

Begin an unordered list.

Chapter 10: Making your own publishing styles

end-uli End an unordered list.
begin-uli-item

Begin an unordered list item.
end-uli-item

End an unordered list item.
begin-oli

Begin an ordered list.
end-oli End an ordered list.
begin-oli-item

Begin an ordered list item.
end-oli-item

End an ordered list item.
begin-dl Begin a definition list.
end-dl End a definition list.
begin-dl-item

Begin a definition list item.
end-dl-item

End a definition list item.
begin-ddt

Begin a definition list term.
end-ddt End a definition list term.

begin-dde

Begin a definition list entry.
end-dde End a definition list entry.
begin-table

Begin a table.

end-table

End a table.
begin-table-group

Begin a table grouping.
end-table-group

End a table grouping.
begin-table-row

Begin a table row.
end-table-row

End a table row.
begin-table-entry

Begin a table entry.

end-table-entry
End a table entry.

53

Chapter 10: Making your own publishing styles 54

10.4 Tag specifications for special markup
muse-publish-markup-tags
A list of tag specifications, for specially marking up text.

XML-style tags are the best way to add custom markup to Muse. This is easily accom-
plished by customizing this list of markup tags.

For each entry, the name of the tag is given, whether it expects a closing tag and/or
an optional set of attributes, whether it is nestable, and a function that performs whatever
action is desired within the delimited region.

The tags themselves are deleted during publishing, before the function is called. The
function is called with three arguments, the beginning and end of the region surrounded by
the tags. If properties are allowed, they are passed as a third argument in the form of an
alist. The ‘end’ argument to the function is always a marker.

Point is always at the beginning of the region within the tags, when the function is
called. Wherever point is when the function finishes is where tag markup will resume.

These tag rules are processed once at the beginning of markup, and once at the end, to
catch any tags which may have been inserted in-between.

10.5 Parameters used for defining styles

Style elements are tags that define a style. Use either muse-define-style or muse-derive-
style (see Section 10.6 [Deriving Styles|, page 55) to create a new style.

muse-define-style name &rest elements [Function]
Usable elements
‘:suffix’ File extension to use for publishing files with this style.

‘:link-suffix’
File extension to use for publishing links to Muse files with this style.

rosuffix’
File extension to use for publishing second-stage files with this style.

For example, PDF publishing generates a LaTeX file first, then a PDF from
that LaTeX file.

:regexps’
List of markup rules for publishing a page with Muse. See [muse-publish-
markup-regexps|, page 47.

:functions’
An alist of style types to custom functions for that kind of text. See [muse-
publish-markup-functions], page 47.

:strings’
Strings used for marking up text with this style.

These cover the most basic kinds of markup, the handling of which differs little
between the various styles.

Chapter 10: Making your own publishing styles 55

:tags’ A list of tag specifications, used for handling extra tags. See [muse-publish-
markup-tags|, page 54.

:specials’
A table of characters which must be represented specially.

:before’ A function that is to be executed on the newly-created publishing buffer (or
the current region) before any publishing occurs.

This is used to set extra parameters that direct the publishing process.

:before-end’
A function that is to be executed on the publishing buffer (or the current region)
immediately after applying all of the markup regexps.
This is used to fix the order of table elements (header, footer, body) in XML-ish
styles.

:after’ A function that is to be executed on the publishing buffer after :before-end, and
immediately after inserting the header and footer.
This is used for generating the table of contents as well as setting the file coding
system.

:final’ A function that is to be executed after saving the published file, but while still
in its buffer.

This is used for generating second-stage documents like PDF files from just-
published LaTeX files.

The function must accept three arguments: the name of the muse source file,
the name of the just-published file, and the name of the second-stage target file.
The name of the second-stage target file is the same as that of the just-published
file if no second-stage publishing is required.

:header’ Header used for publishing files of this style.
This may be a variable, text, or a filename. It is inserted at the beginning of a
file, after evaluating the publishing markup.

:footer’ Footer used for publishing files of this style.
This may be a variable, text, or a filename. It is inserted at the end of a file,
after evaluating the publishing markup.

:style-sheet’
Style sheet used for publishing files of this style.
This may be a variable or text. It is used in the header of HIML and XHTML
based publishing styles.

:browser’
The function used to browse the published result of files of this style.

10.6 Deriving a new style from an existing one

To create a new style from an existing one, use muse-derive-style as follows. This is a
good way to fix something you don’t like about a particular publishing style, or to person-
alize it.

Chapter 10: Making your own publishing styles 56

muse-derive-style new-name base-name &rest elements [Function]

The derived name is a string defining the new style, such as "my-html". The base name
must identify an existing style, such as "html" — if you have loaded ‘muse-html’. The style
parameters are the same as those used to create a style, except that they override whatever
definitions exist in the base style. However, some definitions only partially override. The
following parameters support partial overriding.

See Section 10.5 [Style Elements|, page 54, for a complete list of all parameters.

‘:functions’
If a markup function is not found in the derived style’s function list, the base
style’s function list will be queried.

‘:regexps’
All regexps in the current style and the base style(s) will be used.

‘:strings’
If a markup string is not found in the derived style’s string list, the base style’s
string list will be queried.

Chapter 11: Miscellaneous add-ons, like a minor mode 57

11 Miscellaneous add-ons, like a minor mode

11.1 Edit lists easily in other major modes

muse-list-edit-minor-mode is meant to be used with other major modes, such as Message
(for composing email) and debian-changelog-mode (for editing debian/changelog files).

It implements practically perfect support for editing and filling lists. It can even handle
nested lists. In addition to Muse-specific list items ("-", numbers, definition lists, footnotes),
it can also handle items that begin with "*" or "+". Filling list items behaves in the same
way that it does in Muse, regardless of whether filladapt is also enabled, which is the primary
reason to use this tool.

Installation

To use it, add “(require 'muse-mode)” to your Emacs customization file and add the function
turn-on-muse-list-edit-minor-mode to any mode hooks where you wish to enable this
minor mode.

Keybindings
muse-list-edit-minor-mode uses the following keybindings.
M-RET (‘muse-l-e-m-m-insert-list-item’)
Insert a new list item at point, using the indentation level of the current list
item.
C-< (‘muse-l-e-m-m-decrease-list-item-indent’)
Decrease indentation of the current list item.
C—> (‘muse-l-e-m—-m-increase-list-item-indent’)
Increase indentation of the current list item.

Functions

muse-list-edit-minor-mode [Function]
This is a global minor mode for editing files with lists. It is meant to be used with
other major modes, and not with Muse mode.

Interactively, with no prefix argument, toggle the mode. With universal prefix arg
turn mode on. With zero or negative arg turn mode off.

This minor mode provides the Muse keybindings for editing lists, and support for
filling lists properly.

It recognizes not only Muse-style lists, which use the "-" character or numbers, but
also lists that use asterisks or plus signs. This should make the minor mode generally
useful.

Definition lists and footnotes are also recognized.

Note that list items may omit leading spaces, for compatibility with modes that set
left-margin, such as debian-changelog-mode.

turn-on-muse-list-edit-minor-mode [Function]
Unconditionally turn on Muse list edit minor mode.

Chapter 11: Miscellaneous add-ons, like a minor mode

turn-off-muse-list-edit-minor-mode
Unconditionally turn off Muse list edit minor mode.

o8

[Function]

Chapter 12: Getting Help and Reporting Bugs 59

12 Getting Help and Reporting Bugs

After you have read this guide, if you still have questions about Muse, or if you have bugs
to report, there are several places you can go.

e http://www.emacswiki.org/cgi-bin/wiki/EmacsMuse is the emacswiki.org page,
and anyone may add tips, hints, or bug descriptions to it.

e http://mwolson.org/projects/EmacsMuse.html is the web page that Michael Olson
(the current maintainer) made for Muse.

e Muse has several different mailing lists.

‘muse-el-announce’
Low-traffic list for Muse-related announcements.

You can join this mailing list (muse-el-announce@gna.org) using the sub-
scription form at http://mail.gna.org/listinfo/muse-el-announce/.
This mailing list is also available via Gmane (http://gmane.org/). The
group is called ‘gmane.emacs.muse.announce’.

‘muse-el-discuss’
Discussion, bugfixes, suggestions, tips, and the like for Muse. This mailing
list also includes the content of muse-el-announce.

You can join this mailing list (muse-el-discuss@gna.org) using the sub-
scription form at http://mail.gna.org/listinfo/muse-el-discuss/.
This mailing list is also available via Gmane with the identifier
‘gmane.emacs.muse.general’.

‘muse-el-logs’
Log messages for commits made to Muse.
You can join this mailing list (muse-el-logs@gna.org) using the
subscription form at http://mail.gna.org/listinfo/muse-el-logs/.
This mailing list is also available via Gmane with the identifier
‘gmane.emacs.muse.scm’.

‘muse-el-commits’
Generated bug reports for Emacs Muse. If you use our bug-tracker at
https://gna.org/bugs/7group=muse-el, the bug reports will be sent to
this list automatically.

You can join this mailing list (muse-el-commits@gna.org) using the sub-
scription form at http://mail.gna.org/listinfo/muse-el-commits/.
This mailing list is also available via Gmane with the identifier
‘gmane.emacs.muse.cvs’.

‘muse-el-internationalization’
Discussion of translation of the Muse website and documentation into many
languages.
You can join this mailing list (muse-el-internationalization@gna.org)
using the subscription form at http://mail.gna.org/listinfo/internationalization/ ||
This mailing list is also available via Gmane with the identifier
‘gmane.emacs.muse.internationalization’.

http://www.emacswiki.org/cgi-bin/wiki/EmacsMuse
http://mwolson.org/projects/EmacsMuse.html
mailto:muse-el-announce@gna.org
http://mail.gna.org/listinfo/muse-el-announce/
http://gmane.org/
mailto:muse-el-discuss@gna.org
http://mail.gna.org/listinfo/muse-el-discuss/
mailto:muse-el-logs@gna.org
http://mail.gna.org/listinfo/muse-el-logs/
https://gna.org/bugs/?group=muse-el
mailto:muse-el-commits@gna.org
http://mail.gna.org/listinfo/muse-el-commits/
mailto:muse-el-internationalization@gna.org
http://mail.gna.org/listinfo/internationalization/

Chapter 12: Getting Help and Reporting Bugs 60

e You can visit the IRC Freenode channel ‘#emacs’. Many of the contributors are fre-
quently around and willing to answer your questions. The ‘#muse’ channel is also
available for Muse-specific help, and its current maintainer hangs out there.

e The maintainer of Emacs Muse, Michael Olson, may be contacted at mwolson@gnu.org.
He can be rather slow at answering email, so it is often better to use the muse-el-discuss
mailing list.

mailto:mwolson@gnu.org

Chapter 13: History of This Document 61

13 History of This Document

e 2004 John Wiegley started Muse upon realizing that EmacsWiki had some serious limi-
tations. Around February 2004, he started making "emacs-wiki version 3.00 APLHA",
which eventually became known as Muse.

Most of those who frequent the emacs-wiki mailing list continued to use emacs-wiki,
mainly because Planner hasn’t been ported over to it.

As of 2004-12-01, Michael Olson became the maintainer of Muse, as per John Wiegley’s
request.

e 2005 Michael Olson overhauled this document and added many new sections in prepa-
ration for the first release of Muse (3.01).

Chapter 14: Contributors to This Documentation 62

14 Contributors to This Documentation

The first draft of this document was taken from the emacs-wiki texinfo manual. Michael
Olson adapted it for Muse and added most of its content.

John Sullivan did a majority of the work on the emacs-wiki texinfo manual.

While Sacha Chua maintained emacs-wiki, she worked quite a bit on the emacs-wiki
texinfo manual.

Appendix A: GNU Free Documentation License 63

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft,” which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document,”
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you.” You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: GNU Free Documentation License 64

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements,” “Dedications,” “Endorsements,” or “History.”) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 65

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: GNU Free Documentation License 66

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History,” Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications,” Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements.” Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: GNU Free Documentation License 67

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements,” provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements,” and any sections Entitled “Dedications.” You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted

Appendix A: GNU Free Documentation License 68

10.

document, and follow this License in all other respects regarding verbatim copying of
that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements,” “Dedications,” or “His-
tory,” the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Appendix A: GNU Free Documentation License 69

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License.’’

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being
list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

Index

#

Fauthor. i 16
Frdate . ..o 16
FEARSC v 16
Fitle .o 16

A

anChors. 21

B

blog, journal style 36
blog, one-file-per-entry style 27
bugs, reporting oL 59

C

Cltations. ... 22
COMMENTES .« o\ttt et ettt i 23
compiling Muse............. 6
contributors 62

D

dashes. ... 21
Debian package for Muse 3
developer, becoming 4
development i 3
directives. 16

E

editing Muse files 7,8
ELPA package for Muse 6
Email addresses ... 19
emphasizing texto oL 16
examples 15

F

file extension, specifying 8
footnoteso i 17

G

git version control system, using 3

H

headings............ i 15
help, getting. ... 59
history, of Muse o i 61

horizontal rules................................ 21

70
HTML, inserting a raw block 15
HTML, rendering blocks in monospace......... 15
I
IMages ... 20
images, captions............... ... 21
images, displayingo i 20
images, inlined 21
images, local i 20
images, without descriptions................... 21
inserting files at publish time 23
installing Muse oo i 6
inter-project links 20
InterWiki linkso i 20
italicizing text........... ool 16
J
journal 36
K
keystrokes........ ... 13
L
line breakso 15
links, explicit...... ... 19
links, implicit.......... ... oo i 19
links, raw. ... 19
links, with images 20
links, with target on same page................ 21
lisp, and insert command 21
lisp, embedded 21
LStS o 17
lists, breaking lines 18
lists, bulletsco i i 17
lists, definitions............ oo 17
lists, enumeratedol 17
lists, nested. 18
literal text.. ... 15
M
markup ... 15
monospace, rendering blocks................... 15
monospace, rendering words 16
muse-define-style.................... 54
muse-derive-style................ 56
muse-list-edit-minor-mode 57
muse-project-alist, reference 10
muse-xml-encoding-map 45

Index

P

paragraphs 15
paragraphs, centered.......... 15
paragraphs, quoted 15
POCtIY ..o 17
PTOJECtS .. 9
projects, multiple...........o 9
projects, options.o 10
projects, single i 9
projects, subdirectories 10
publishing styles. ...t 27
publishing styles, blosxom-html................ 29
publishing styles, blosxom-xhtml............... 29
publishing styles, book-latex 30
publishing styles, book-pdf..................... 30
publishing styles, chapbook-latex 43
publishing styles, chapbook-pdf................ 43
publishing styles, context 30
publishing styles, context-pdf.................. 30
publishing styles, context-slides................ 31
publishing styles, context-slides-pdf............ 31
publishing styles, deriving 55
publishing styles, docbook 33
publishing styles, html......................... 33
publishing styles, ikiwiki....................... 36
publishing styles, info-pdf...................... 44
publishing styles, journal-book-latex 38
publishing styles, journal-book-pdf............. 38
publishing styles, journal-html................. 37
publishing styles, journal-latex................. 38
publishing styles, journal-pdf 38
publishing styles, journal-rdf................... 38
publishing styles, journal-rss................... 38
publishing styles, journal-rss-entry 38
publishing styles, journal-xhtml................ 37
publishing styles, latex.............. 40
publishing styles, latexcjk................... ... 40
publishing styles, lecture-notes................. 41
publishing styles, lecture-notes-pdf............. 41
publishing styles, pdf........... 40
publishing styles, pdfcjk 40
publishing styles, poem-latex 43
publishing styles, poem-pdf.................... 43
publishing styles, RSS 1.0...................... 38
publishing styles, RSS 2.0...................... 38
publishing styles, slides........................ 40
publishing styles, slides-pdf.................... 40
publishing styles, texi...................ooi. 44
publishing styles, xml........... 45
publishing, including markup in headers and
footers. ...coou i 23

publishing, inserting files....................... 23

71
publishing, markup functions 47
publishing, markup regexps.................... 47
publishing, markup strings..................... 49
publishing, markup tags.................... ... 54
publishing, omitting lines...................... 23
publishing, rules............. 47
publishing, style elements...................... 54
quotations........... ... oo il 15
releases, Debian package........................ 3
releases, from source............ ... i 3
releases, Ubuntu package........................ 3
settings.......o 7
settings, init file............ 7
T
tables . ..o 18
tables, orgtbl-mode style.................... ... 19
tables, simple. 18
tables, table.el style.......... 19
BagsS . . 23
tags, <CIte> 22
turn-off-muse-list-edit-minor-mode........ 58
turn-on-muse-list-edit-minor-mode......... 57
Ubuntu package for Muse....................... 3
underlining texto oL 16
updating Muse with git......................... 4
URLS o 19
\%
verbatim text......... .. i 16
VETSES .« o vt ettt 17
verses, multiple stanzas................ 17
WikiNames. ... 20
WYSIWYG ..o 16

	About the documentation
	What is Muse?
	How to Get Muse Releases and Development Changes
	Released versions of Muse
	Latest unreleased development changes

	Compiling and Installing Muse
	Getting Started
	How to Load Muse
	How to Edit Files in Muse
	Publishing a Single File or Project
	Using a Different File Extension

	Creating and Managing Muse Projects
	A Single-Project Example
	A Multiple-Project Example
	Publishing Subdirectories in Projects
	Listing of Available Options for Projects

	Keys Used in Muse Mode
	Rules for Using Markup
	Paragraphs: centering and quoting
	Levels of headings
	Directives at the beginning of a document
	Bold, italicized, and underlined text
	Making notes to be shown at the end
	Indicating poetic stanzas
	Lists of items
	Generation of data tables
	Hyperlinks and email addresses with descriptions
	Bare URLs, WikiNames, and InterWiki links
	Publishing and displaying images
	Inserting a horizontal line or anchor
	Evaluating Emacs Lisp code in documents for extensibility
	Support for citing other resources
	Lines to omit from published output
	Tags that Muse recognizes

	Publishing Various Types of Documents
	Integrating Muse and pyblosxom.cgi
	Other tools needed for the Blosxom style
	Format of a Blosxom entry and automation
	Blosxom styles and options provided

	Publishing entries into a compilation
	Publishing ConTeXt documents
	Publishing in DocBook XML form
	Publishing in HTML or XHTML form
	Integrating with ikiwiki
	Keeping a journal or blog
	Publishing LaTeX documents
	Publish a poem to LaTeX or PDF
	Publish entries to Texinfo format or PDF
	Publish entries to XML

	Making your own publishing styles
	Specifying functions to mark up text
	Markup rules for publishing
	Strings specific to a publishing style
	Tag specifications for special markup
	Parameters used for defining styles
	Deriving a new style from an existing one

	Miscellaneous add-ons, like a minor mode
	Edit lists easily in other major modes

	Getting Help and Reporting Bugs
	History of This Document
	Contributors to This Documentation
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

