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Preface
Copyright c© 2006 Michael Olson and Ryan Stutsman

This review guide may be used in whole or in part for any purpose, as long as proper credit is given to
the authors of this review guide.

Disclaimer
This review guide is neither guaranteed nor warranted to be accurate.
The authors of this review guide explicitly disclaim responsibility for any damage (academic or other-
wise) that may result from use of the content contained in this guide.
The contents of this review guide are original (except for the Theorems and Lemmas) and are not
known to infringe on any copyright or patent claims. The authors have used ideas from both the
course textbook (written by Sipser) and the lecture notes and homework (written by Frederickson).
To the best of our knowledge, this review guide is not endorsed by any Purdue University faculty
member.

Availability
The source code for this review guide is available at

http://www.mwolson.org/notes/manual/cs483review.tex

The latest version of this document is available in PDF form at

http://www.mwolson.org/notes/manual/cs483review.pdf

Contributions of effort and corrections are welcome, but not mandatory. If you wish to receive updates
via email when changes are made, email mwolson@member.fsf.org.

Notation
We use formatting like this: L,w, f(w) when describing any language, string, or function that is used
as a “parameter”.
We use formatting like this: PSPACE, HALTTM when describing a class of languages or a particular
language.
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1 Glossary
1.1 Uncountable numbers
diagonalization Used to determine |A| = |B|.

A set is countably infinite if there exists a mapping of each element to N. To demonstrate uncountability,
we “enumerate” the set and demonstrate that the enumeration is not complete.
Diagonalization achieves this by creating such an enumeration and then showing an element is missing
from the enumeration by showing there is an element in the original set that differs from every other
item in the enumeration by at least one of its components.

Real numbers (R) An uncountably infinite set.
This is demonstrated by the fact that if a set of real numbers is mapped to N there always exists
some number ∈ R for which the first digit does not match the first digit of the first element in the
enumeration, the second digit does not match the second digit of the second element in the enumeration,
and so on.

1.2 Language classes
NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

None of the above relations have been proven to be strict.

1.2.1 Not recognizable

Examples:

• co-ATM (ATM)

1.2.2 Undecidable

Theorem 1 Language is decidable ⇔ it is Turing-recognizable and co-Turing-recognizable.

Examples:

• ATM = {<M , w> | M is a T.m. and M accepts w}.

• HALTTM = {<M , w> | M is a T.m. and M halts on input w}.

• ETM = {<M> | M is a T.m. and L(M) = ∅}.

• EQTM = {<M1, M2> | M1 and M2 are T.m.’s and L(M1) = L(M2)}

• PCP: Determine whether a collection of dominoes may be arranged such that the string formed by the
top of the row of dominoes matches the string formed by the bottom.

1.2.3 P

P is the class of languages for which a polynomial time T.m. are known to exist.

Theorem 2 Every context-free language is a member of P.

Theorem 3 If A ≤p B and B ∈ P, then A ∈ P.

Examples:

• PATH = {<G, s, t> | G is a directed graph that has a directed path from vertex s to vertex t}.
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1.2.4 NP

NP is defined as the class of languages for which a polynomial-time verifier exists. It is more conveniently
described as the class of languages for which a non-deterministic polynomial time T.m. are known to exist.

Examples:

• HAMPATH = {<G, s, t> | G is a directed graph with a Hamiltonian path from s to t}. A Hamiltonian
path includes every node in the graph exactly once, with no repeats. In this case, it begins with node
s and ends with node t.

• CLIQUE = {<G, k> | G is an undirected graph with a k-clique}. A clique is a component of the
graph where every node is connected with every other node. A k-clique is a clique of size k.

• SUBSET-SUM = {<S, t> | S is a set of numbers that may be partitioned into two sets that have the
same sum, and that sum is t}.

• SAT = {<φ> | φ is a satisfiable Boolean formula}. That is, we can find an assignment of true or
false to each of the variables in φ such that the formula yields true.

• 3SAT = {<φ> | φ is a satisfiable Boolean formula which is in 3-cnf form}. That is, the formula is
grouped into parenthesized groups of three logical OR’s, connected by AND’s.

NP-complete

NP-complete languages are those for which if one particular language in the class was known to be in P,
the remainder of the languages in the class would also be in P.

Additionally, if one such language were found, we would know that P = NP.

Cook-Levin theorem SAT ∈ P ⇔ P = NP.

The proof that SAT is NP-complete uses a tableau to reduce any language A in NP to SAT in polynomial
time. If any row of the tableau is an accepting configuration for A, A will accept the given input. The top
row of the tableau is the starting configuration for A.

Examples:

• SAT

• 3SAT

• CLIQUE

• VERTEX-COVER = {<G, k> | G is an undirected graph that has a k-node vertex cover}. That is,
there is a some k-node subset of the vertices of G for which every node of G touches one of these nodes.

• HAMPATH

• UHAMPATH is a variant of HAMPATH that has an undirected graph, and an undirected path through
the graph.

• SUBSET-SUM
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1.2.5 PSPACE

This is the class of languages that take polynomial (according to the length of the input) amounts of space.

Savitch’s theorem
∀f : N → R+, where f(n) ≥ n, NSPACE(f(n)) ⊆ SPACE((f(n))2).

This is proven by constructing an algorithm called CANYIELD. This algorithm takes a nondeterministic
T.m. N (implicitly), and the parameters c1, c2, and t. It accepts if N can go from configuration c1 to c2

(along any nondeterministic path of N) in t or less steps.
The result of this theorem is that PSPACE = NPSPACE.

PSPACE-complete

This is the class of languages that is both in PSPACE and for which every language A in PSPACE is
polynomial time reducible to it.

Examples:

• TQBF = {<φ> | φ is a true fully quantified Boolean formula}. “Fully quantified” means that φ has
all of its quantifiers in front, and its variables and operators following. The formula is “true” iff there
is no assignment of values to variables that can make it false.

• FORMULA-game: This is the same as TQBF, but written as a graph-traversal game.

• GG (generalized geography): The generic form of a graph-traversal problem, for which we are given a
graph G and a starting node b.

1.2.6 EXPTIME

This is the class of languages for which an exponential time T.m. exists.

1.2.7 L

L is the class of languages that are decidable in log space on a deterministic TM. That is, L = SPACE(log n).
Log space is a machine that has a read-only input tape, and a read/write work tape where no more than

O(log n) space is used on the work tape.

1.2.8 NL

Same as L except L = NSPACE(log n) (the machine is equipped with non-determinism). Note that space is
defined as the maximum amount of space used on any branch of computation.

NL-complete

B is NL-complete iff

1. B ∈ NL, and

2. ∀A ∈ NL, A ≤L B

That is, A is log space transducible to B.
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Log space transduction is performed by some TM with a read-only input tape, a write-only output tape,
and only uses O(log n) space on its read/write work tape.

In actual proof situations, we show B ∈ NL, then demonstrate A ≤L B,A ∈ NL, and then claim since
A ∈ NL that B ∈ NL as well by the transitivity provided by ≤L. That is, any problem in NL can be solved
by B with a log space transduction since A can be solved by B using a log space transduction and any C ∈
NL could be transduced to A to begin with. Props to transitivity.

Examples:

• PATH is NL-complete.

1.2.9 NC

NCi, for i ≥ 1, is the class of languages which may be decided by a uniform family of circuits with polynomial
size and O((log n)i) depth. NC is the union of all such classes.

1.3 Mechanisms
1.3.1 Deterministic finite automaton

This is abbreviated “DFA”.

G = (Q, Σ, δ, q0, F)

1.3.2 Non-deterministic finite automaton

This is abbreviated “NFA”.

G = (Q, Σ, δ, q0, F)

The meaning of the symbols is the same for that of the DFA.

1.3.3 Push-down automaton

This is abbreviated “PDA”.

G = (Q, Σ, Γ, δ, q0, F)

1.3.4 Grammar

There are two main classes of grammar: context-free and context-sensitive.

G = (V, Σ, R, S)

1.3.5 Turing machine

We abbreviate “Turing machine” by “T.m.” in the remainder of the text.

1.3.6 Enumerator

This is a device that prints all of the strings in a particular language. Repeating a string is permitted.
It may be defined in terms of a T.m., but that is not covered here.

1.3.7 Oracle

This is a device that can immediately determine (in constant time) whether a given string is part of a
language.
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1.3.8 Oracle Turing machine

This is a T.m. that uses an oracle. It is denoted MB , where B is the language for which an oracle exists.

1.3.9 Verifier

This is an algorithm (or rather, a T.m. written in the form of an algorithm), that given a string and a
language, accepts iff. the string (called a “certificate”) is part of the language. The language is an implied
parameter, not an actual one. We usually refer to a specific verifier as “The verifier for L ”, where L is a
language.

1.3.10 Circuits

• Uniform circuit family

• A ∈ TIME(t(n)) → A has circuit complexity O(t(n)2)

• size-depth circuit complexity

1.4 Techniques
1.4.1 Mapping reducibility

This is denoted L ≤m M . To understand what this means, we must first define a computable function.

computable function
A function f that for some T.m. T , given an input w for some T.m. M , leaves the input f(w) on the
tape. f(w) will be composed of the symbols in the input alphabet for M . In short,

• No new symbols are produced.
• Some transformation is done on w.

Now we can define L ≤m M as: L is mapping reducible to M if there is a computable function f such
that for every w in A, f(w) is in B. Also, for every w′ not in A, f(w′) is not in B. This may be written
more succinctly as follows.

w ∈ L ⇔ f(w) ∈ M

Whenever the textbook states that “L reduces to M” or “show a reduction from L”, they are referring
to mapping reducibility, often with an implicit time or space constraint, as discussed in later techniques.

1.4.2 Polynomial-time reducibility

This is denoted L ≤p M , and means that L is mapping reducible to M , with the added restriction that this
reduction must occur in polynomial time.

This is used to prove NP-completeness of a language, or that a language is in P.

1.4.3 Turing reducibility

This is denoted L ≤T M , and means that if an oracle for the language M existed, we can write an oracle
T.m. that decides language L. In other words, we use a “subroutine” for M in the definition of a T.m for L.

We can also say that language L is “Turing reducible” to language M . If we relate this to programming,
we could even say that a routine for L “depends on” a routine for M .

Annoyingly, this notation is backwards compared to the direction for mapping reducibility. In mapping
reducibility, we construct a function that takes the input from the left side and transforms it into input for
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the right side. In Turing reducibility, however, we construct a T.m. for the left side given a T.m for the
right side.

We can use Turing reducibility to determine whether a language is “decidable relative to” another lan-
guage.

Theorem
If L ≤T M , and M is decidable, then L is decidable.

We also know
If L ≤m M , then L ≤T M . The reverse is not necessarily true.

1.4.4 Legal windows

These are groups of cells in a tableau which can represent a valid transition from one configuration to another.

Warning This definition may be inaccurate and in need of revision. The authors of this guide do not
particularly like this mechanism, and have not given it much effort.

1.4.5 Log space reducibility

This is denoted LL ≤L M . and means that LL is mapping reducible to M , with the added restriction that
this reduction must occur in log space.

This is used to prove NL-completeness of a language, or that a language is in L.
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2 Problem-solving
2.1 Prove language is not regular
We will use the pumping lemma to prove that a language is not regular. First, we assume that the language
is regular, and then use the pumping lemma to arrive at a string that should be part the language, but isn’t.
This is a contradiction, so the language must not have been regular to begin with.

Lemma 1 If A is regular then ∃p such that if s ∈ A, |s| ≥ p then s = xyz such that

1. ∀i ≥ 0, xyiz ∈ A,
2. |y| > 0, and
3. |xy| ≤ p.

Note: Just because you can pump a language does not mean that it must be regular.

2.2 Find decider for a language
Not yet written.

2.3 Proving language is undecidable
General strategy for some language B:

1. Suppose B is decidable by some machine, M .

2. Show some problem A that is undecidable is reducible (in any time and space) to B by some machine
that employs M (usually in some devious manner).

3. Perform obligatory hand waving.

4. Since A is undecidable and we provided a decider for it that employs M our assumption must be
garbage.

5. B, therefore, in all its glory, is undecidable as well.

Select A from the sweet set mentioned in 1.2.2
e.g. HALTTM is reducible to ATM , therefore HALTTM is undecidable.

2.4 Prove language is not context-free
We will use an expanded variant of the pumping lemma.

Lemma 2 If A is a CFL then ∃p such that if s ∈ A, |s| ≥ p then s = uvxyz such that

1. ∀i ≥ 0, uvixyiz ∈ A,
2. |vy| > 0, and
3. |vxy| ≤ p.

Note: Just because you can pump a language does not mean that it must be a CFL.
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2.5 Proving language is NP-complete
In order to prove that some language L is NP-complete, we must do the following.

1. Show that L ∈ NP.
The most popular way to do this is to use nondeterministic guessing of input, coupled with polynomial
time verification of our guesses. We could explicitly give an algorithm, but often a simple paragraph
suffices.

2. Show that some language known to be NP-complete is polynomial-time reducible to L. We’ll call this
second language M . The notation for this is M ≤p L.
If we wanted to, instead of doing the rest of this proof, we could show that L is NP-hard (in other
words, that any language can be reduced using polynomial time to L). This is usually more tedious
than doing the following, however.

• This is done by showing a polynomial-time mapping reduction from L to MM . Namely, write
out a computable function f that takes an instance of MM (or equivalently, the “input” of MM)
and produces an instance of L (the “input” of L), doing this in polynomial time.

• We must also prove that when an instance/input of L yields true1, the corresponding instance/input
for M also yields true, and vice versa.
Start by assuming the input of L produces a true result, and then show that f produces input
for M which must yield a true result.
Then show the reverse direction – namely, assume the input of M produces a true result, and
then show that f produces input for L which must yield a true result.

3. Since we have shown MM ≤p L, and we know A ≤p MM for every language A ∈ NP, A ≤p MM ≤p L.
This completes our proof, since we have previously shown that L ∈ NP.

2.6 Proving language in PSPACE
In order to prove that some language L is in PSPACE, we must do the following.

• Define one or more machines that together decide the language in polynomial space (that is, O(nk), k
∈ N).

• Provide analysis of space usage of these machines so that it is determined to be O(nk) at worst case,
specifying k.

2.7 Proving language in L
In order to prove that some language LL is in L, we must provide a machine that decides LL as follows.

• The machine that we make (call it M), is provided with a read-only input tape of length n, and a work
tape that is O(log n).

• One common method for reducing our space usage is to use counters (numbers that are incremented
and decremented) and store them in binary encoding to our work tape. This encoding only takes up
O(log t) space, as opposed to storing an equivalent sequence of symbols which has length t.

• We can use time-wasteful algorithms that we would normally pass over, as long as they only use
logarithmic space.

1In other words, that a machine for L would accept the input.
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2.8 Proving language is NL-complete
In order to prove that some language LL is NL-complete, we must do the following.

1. Show that LL ∈ NL.
The most popular way to do this is to use nondeterministic guessing of input, coupled with log space
verification of our guesses. We could explicitly give an algorithm, but often a simple paragraph suffices.

2. Show that some language known to be NL-complete is log-space reducible to LL. We’ll call this second
language MM . The notation for this is MM ≤L LL.
If we wanted to, instead of doing the rest of this proof, we could show that LL is NL-hard (in other
words, that any language can be reduced to LL using log space). This is usually more tedious than
doing the following, however.

• This is done by showing a logarithmic-space mapping reduction from LL to MM . Namely, write
out a computable function2 f that takes an instance of MM (or equivalently, the “input” of MM)
and produces an instance of LL (the “input” of LL), using log space to do so.

• We must also prove that when an instance/input of LL yields true3, the corresponding in-
stance/input for MM also yields true, and vice versa.
Start by assuming the input of LL produces a true result, and then show that f produces input
for MM which must yield a true result.
Then show the reverse direction – namely, assume the input of MM produces a true result, and
then show that f produces input for LL which must yield a true result.

3. Since we have shown MM ≤L LL, and we know A ≤L MM for every language A ∈ NL, A ≤L MM ≤L

LL. This completes our proof, since we have previously shown that LL ∈ NL.

2This is actually called a "log space transducer", which is a very strange name for such a simple device.
3In other words, that a machine for LL would accept the input.
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