
Integrating with Facebook using Facebook::Graph

Ticketmaster – Michael Olson

August 31, 2011

Facebook::Graph
Introduction
How to extend Facebook::Graph

Ticketmaster backend
Facebook requests
Example: Verifying a Facebook session
Challenges with FB integration
Getting data for many FB users

Introduction to Facebook::Graph

Facebook::Graph - A fast and easy way to integrate your apps with
Facebook.

I http://search.cpan.org/~rizen/Facebook-Graph/

I http://github.com/rizen/Facebook-Graph

http://search.cpan.org/~rizen/Facebook-Graph/
http://github.com/rizen/Facebook-Graph

Introduction to Facebook::Graph

Strengths:

I Supports most Facebook Graph API featuers

I Uses Moose/Mouse which makes it relatively easy to extend

Weaknesses:

I No support for FQL (though largely unnecessary because
Graph API covers almost everything you would need FQL for)

How to extend Facebook::Graph

package My::Facebook::Graph::AppAccessToken;

use Any::Moose;

use Facebook::Graph;

with ’Facebook::Graph::Role::Uri’;

has new_field => (is => ’ro’, required => 1);

sub uri { ... }

sub uri_as_string { ... }

no Any::Moose;

__PACKAGE__->meta->make_immutable;

1;

Facebook requests

Front-end will request:

I Single user

I Info about all people tagged on an event

I Friends of user (requires Facebook session to be passed)

Verifying a Facebook session

use Digest::MD5 qw(md5_hex);

my ($self, $session) = @_;

return 0 if ref $session ne ’HASH’ ||

!defined $session->{sig} ||

!defined $APP_SECRET ||

(defined $session->{expires} &&

$session->{expires} + 600 < time);

my $sig = join(’’, map { "$_=" . $session->{$_} }

grep { $_ ne ’sig’ } sort keys %$session);

$sig .= $APP_SECRET;

return (md5_hex($sig) eq $session->{sig});

Challenges: Cache

I Problem: Facebook doesn’t like it if you perform too many
requests in a certain timeframe; especially same user.

I So we need to cache the data in some way.

I Option 1: Put per-user results in a database (or noSQL
solution)

I Able to fully minimize FB calls
I Works well with FB Realtime API

I Option 2: Put per-request results in cache

I Quicker to implement
I No additional DB load

Challenges: Queue

I Problem: Need to be careful not to hold too many open
connections on application box.

I Solution: Use intermediary queue server to hold the
connection open, and periodically do front-end initiated poll.

I We set aside a field in the backend response called ’retry’; this
field is used to store encrypted continuation data (token) to
perform a poll on queue.

I Since there can be multiple FB requests in a single backend
request, we use a hash to indicate the kind of request and its
token.

Requesting multiple facebook users

I Problem: We need to have first name, last name, picture of
all Facebook users that are tagged to a certain event.

I If we were storing FB data in a DB, this could be a simple
join.

I As it is, we need to request multiple FB users at once.

I We cache all of these users according to the event ID, and
request any that we may not have info about yet.

Facebook call for multi-user

Example Facebook::Graph request for this info

$fb->query()

->select_fields(qw(id name picture))

->where_ids(@missing)->request;

I Makes a call to ’/’, setting ids query arg to long list of IDs.

I List is so long that we need to use a POST.

POST request

$response = post(

body => ’method=get&’ . $query,

content_type =>

’application/x-www-form-urlencoded’);

I Include ’method=get’ in query params so that Facebook API
can treat it like a GET request.

I FB API

I GET: Request info
I POST: Write info

Facebook on ISM

Example of Facebook integration on Ticketmaster.com:

I ticketmaster.com/event/0B0046C1D30F4734

I (Distant Worlds: Music from Final Fantasy)

	Facebook::Graph
	Introduction
	How to extend Facebook::Graph

	Ticketmaster backend
	Facebook requests
	Example: Verifying a Facebook session
	Challenges with FB integration
	Getting data for many FB users

