
From Marmalade to Emacs – EmacsConf 2013

Michael Olson

Mar. 29, 2013



Target Audience

I Authors of add-ons for Emacs that may have already gotten
them into ELPA, el-get, or Marmalade, that might be
interested in getting them into Emacs itself

I Power-users with project management skills who may want to
work with an add-on maintainer to help get that project into
Emacs

I Authors of relatively new add-ons who want to keep their
options open for getting the add-on into Emacs

I Not about: packaging for ELPA, el-get, or Marmalade



Scope of Talk

I Why get code into Emacs?

I Licensing concerns w.r.t. Debian

I Assessing amount of work to get existing code into Emacs

I Bookkeeping practices for new contributions

I Whether to keep a non-Emacs fork

I Best practices for maintaining a fork



Definitions

Emacs-ready
Copyright is fully assigned to FSF in terms of the
name of this project (not Emacs); could go into
Emacs with a small amount of technical effort and
Emacs maintainer consent



About Me

I Maintained ERC; Emacs IRC Client, got it into
Emacs—model project for this talk

I Maintained Emacs Muse; similar to Org, backed publishing of
Planner Mode; “Emacs-ready”

I Maintained EMMS; Emacs music player, wrote MPD backend;
“Emacs-ready” as of 2009



Why Get Code into Emacs: Pros

I Increases userbase of your add-on

I Generates excitement for existing Emacs users, which helps
grow the community

I Allows code to keep up faster with the latest Emacs features,
because deprecated functions and variables will show up when
Emacs developers grep the codebase



Why Get Code into Emacs: Pros

I Great resume addition: “I have code in Emacs”; Worked for
me anyway. . . YMMV

I Time capsule; Emacs has been around 37 years, could see
active use for that many again



Why Get Code into Emacs: Cons

I Contributors with > 12 lines must assign copyright
http://www.gnu.org/prep/maintain/html_node/

Copyright-Papers.html

I Have to keep track of authorship and reach out to
contributors as a result of the above

I Need to get copyright assignment from your place of work;
this is usually more time-consuming than genuinely difficult

I Initial efforts can be challenging

http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html
http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html


Why Get Code into Emacs: Cons

I Can sometimes come down to clean-room reimplementation of
feature when contributors are not willing/able to assign code

I Process can take half a year for code with many contributors

I Users of the add-on via Emacs may take a while to see new
features, depending on whether you’re able to get changes
into minor Emacs releases; distinguishing version strings for
bug reports is useful here



Social concerns

I Your code will need to be GPL v3

I Your documentation is recommended to be GFDL, but
maintainers can (last time I checked) accept a looser license
like GPL or LGPL

I Debian project will not accept GFDL’d documentation
because of invariant (non-modifiable) sections; even
documents without invariant sections are sketchy to them

I Debian makes you install an optional package with name
“-non-dsfg” to get Emacs manuals; Ubuntu will instead install
that package for you



Getting Code Emacs-Ready

I Track down all the people who have contributed code to the
project

I If the project has an AUTHORS file or similar, that would be
a good file to keep updated with findings and compare notes

I You’ll need to look at logs, grep for ’thanks’ and other
attributions in commit messages. Senging git log -p output
to a file and looking through it multiple times may be useful.

I Once you have a list of name, email address, and number of
nontrivial modified lines (discounting indentation and similar),
you’ll need to contact anyone who has done more than 12
lines of code



Getting Code Emacs-Ready

I Use this as a guide for how to send copyright requests:
http://www.gnu.org/prep/maintain/html_node/

Copyright-Papers.html

I Contact the FSF Copyright Clerk at assign@gnu.org for
help/questions, especially around whether to assign to Emacs
or the name of your program; preferences can vary, though
last I checked, name of program is preferred

I May want to pre-emptively ask to assign contributions for
both program and Emacs, to save time

I Decide how long you want to wait for folks to respond and
finish the process. Expect it to take up to 5 months.

I If you can’t get ahold of a contributor, you may need to
consider rewriting their contributions or omitting the file with
their changes, though this is an unpleasant last resort.

http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html
http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html


Bookkeeping practices

I People will send assignments to the FSF, who will contact you
as they come in; you may or may not be provided with a GNU
shell account with read-only access to the master copyright
assignment file

I Once they’re all in, change copyright notices on all your
source files to be:
Copyright (C) 20XX - 20YY Free Software Foundation, Inc.

I Copyright notices should note that this add-on is not part of
GNU Emacs

I If copyright notices are missing from files that would be
considered source, add them

I Your code is now “Emacs-ready”

I As new contributions come in, check them against the
AUTHORS file and keep that up-to-date to save yourself time
later



Getting code into Emacs

I It may be a good idea to have documentation prepared in
Texinfo format before proceding further; this allows your
project to be easily discovered while browsing Emacs manuals,
and might be a requirement for larger add-ons

I Depending on your comfort level, contact either
emacs-devel@gnu.org or Stefan Monnier and Chong Yidong
(current maintainers of Emacs) to get an idea for level of
interest

I You and your active contributors might need new assignments
for Emacs itself, if the previous assignments were just for the
program



Getting code into Emacs

I If the maintainers agree to accept your code into Emacs,
they’ll tell you which branch, and get you added to the list of
Emacs contributors on Savannah so you have write access

I You may need to change bzr configuration to use this new
writable access method

I If your add-on is large, you may need a new directory added to
the source tree, with a Makefile; otherwise an existing
directory is fine; maintainers will give direction in this

I Documenation and miscellenea go into other directories



Getting code into Emacs

I Copyright assignments will need to change to note that the
files are part of GNU Emacs

I Someone will prepare a short summary of your add-on for the
new features list in the next Emacs release

I It might take until the next major Emacs release for the
changes to go live

I When updating your add-on in Emacs, may need to update
ChangeLog file, though a discussion appears to be ongoing
about that



Keeping a fork: worth it?

I If you already have an active community around your add-on,
you may want to maintain a fork so that you can do quick
releases for your community members

I Otherwise, may be best to consider Emacs to be the canonical
place to get your add-on

I If XEmacs or support for older versions is a concern, may wish
to keep a fork for them, though this is less of a concern now
that Emacs maintainers are so quick with new releases



Keeping a fork: maintenance

I If you do decide to maintain a fork, best practice is to keep a
dedicated branch of your project; I like “emacs-24”

I This branch should have the exact content of your source
files; if you want to track documentation, may want to create
subdirs like doc, src, and have a script that can copy files
to/from Emacs and your branch; but keep directory structure
exactly the same as your master branch

I Process is something like:

I Switch to emacs-24 branch
I Run import script that copies changes from Emacs to your

workdir
I Spot-check results to catch new files, deleted files, and

changes needing compatibility hacks



Keeping a fork: maintenance

I Process, continued:

I Commit these changes
I Merge them back to master, summarizing changes in commit

log
I Merge from master branch
I Resolve conflicts, commit
I Copy files to Emacs source tree using export script
I Run tests on Emacs source (compile and sample use cases at

minimum)
I Check in changes to Emacs
I Do an “ours-style” merge from your emacs-24 branch to your

master branch to indicate that you have up to these changes in
Emacs



Compatibility functions

I Upon committing code to Emacs, you’ll need to remove any
compatibility hacks to make code work with older versions of
Emacs or XEmacs

I When introducing new ones to your fork, make sure you use
your project’s namespace, not the global namespace

I Ex: erc-format-string instead of format-string

I Good compatibility hacks should check for latest function
name first using fboundp, then fall back to earlier names

I For speed, do eval-when-compile and make (for example)
erc-format-string an alias for format-string



Questions?


	Intro
	Scope of Talk
	Definitions
	About Me

	Why Get Code into Emacs
	Pros
	Cons

	Social Costs/Benefits
	Getting Code Emacs-Ready
	Amount of work

	Bookkeeping practices for new contributions
	Getting code into Emacs
	Non-Emacs Fork
	Whether to keep a non-Emacs fork
	Best practices for maintaining a fork


